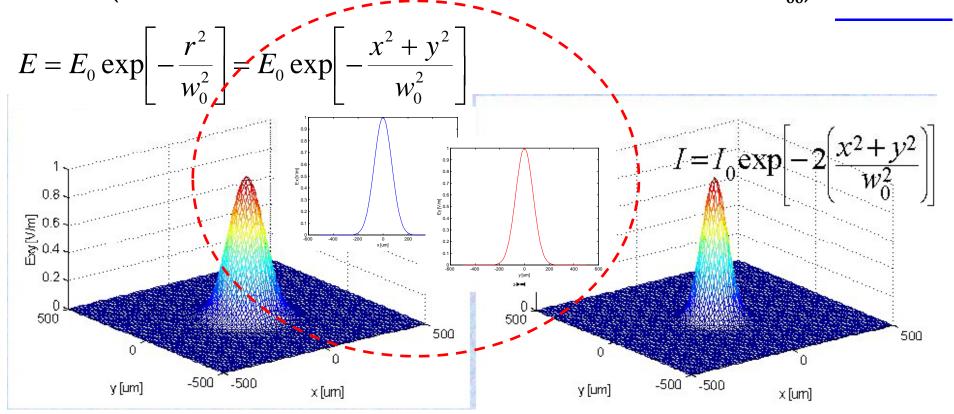
"Misure Ottiche"

Corsi di Laurea Magistrale in Ingegneria Elettronica e delle Telecom. e Fisica

Sorgenti Laser: Caratteristiche e Applicazioni

Cesare Svelto Politecnico di Milano


Principali Caratteristiche delle Sorgenti Laser

- Caratteristiche dei laser
 - Monocromaticità ($\Delta v_{\text{laser}} \sim 10^{-6} \div 10^{-9} \times \Delta v_{\text{lampada spettrale}}$)
 - Brillanza $B=P/A\Omega$ ($B_{laser}=10^5 \div 10^8 \text{ W/m}^2\text{sr}$)
 - Stabilità in ampiezza ($\Delta P/P \sim 10^{-5}$) e frequenza ($\Delta v/v \sim 10^{-14}$)
 - Impulsi ultracorti (~10⁻¹⁵ s), elevata potenza di picco (~10¹⁵ W)
 - **Dimensioni** (da ~1 μm fino ad alcuni km)
 - Propagazione: **spazio libero** o in **fibre ottiche**
 - Commercializzazione: costi e ingombri ridotti

Caratteristiche d'uso e Applicazioni delle Sorgenti Laser _

- Caratteristiche d'uso dei laser
 - Qualità spaziale del fascio COERENZA SPAZIALE
 - Qualità spettrale ("monocromaticità") COERENZA TEMPORALE
 - Lunghezza d'onda
 - Potenza ottica o energia dell'impulso
 - "SOP" State Of Polarization POLARIZZAZIONE
- Applicazioni dei laser
 - Esperimenti di fisica, <u>metrologia</u>, <u>telemetria</u>, <u>interferometria</u>, <u>comunicazioni ottiche</u>, lavorazioni industriali, <u>riferimenti</u> ottici, stampanti, puntatori, <u>misure e sensori optoelettronici</u>

Proprietà dei fasci laser (PROFILO TRASVERSALE e modo fondamentale TEM₀₀)

- Profilo d'intensità ottica $[W/m^2]$ in un piano (x-y) trasverso alla direzione di propagazione (z): dipende dal modo spaziale e dalla sua "larghezza"
- Modo fondamentale TEM_{00} è simmetrico in direzioni x e y con profilo GAUSSIANO, sia per il campo elettrico che per l'intensità, con una dimensione di macchia o "larghezza" w_0 , beam waist, $(37\%E_0$ o $13.5\%I_0)_{4/31}$

Diapositiva 4

incluso questo lucido è terminata la 4a lez 04-05 in aula GR.1.4 Cesare Svelto; 30/03/2005 CS5

incluso questo lucido è terminata la 3a lez 05-06 in aula F.1.2 Cesare Svelto; 22/03/2006 CS8

Proprietà dei fasci laser (PROFILO TRASVERSALE e dimensione di macchia – spot size)

La potenza P è l'integrale dell'intensità I su una superficie di raccolta S (ad es. cerchio di raggio r)

$$I_{(r)} = \frac{2 P_0}{\pi w_0^2} e^{-2r^2/a^2}$$

5/31

$$P(S) = P(r) = \int I dS = I_0 \int \exp[-2(\rho^2 / w_0^2)] 2\pi \rho d\rho \quad \text{con } S = \pi r^2$$
sostituendo $\xi = 2\frac{\rho^2}{w_0^2}$ e $P_0 = \frac{1}{2}\pi w_0^2 I_0$ e integrando:

$$P(r) = P_0 \int_0^{2(r^2/w_0^2)} e^{-\xi} d\xi = P_0 \left[1 - \exp\left(-2\frac{r^2}{w_0^2}\right) \right]$$
 se e⁻²=13.5% 1-e⁻²=86.5%

potenza raccolta su un cerchio di raggio r

• Dentro un cerchio di raggio $r = w_0$ cade l'86.5% di tutta la potenza P_0 contenuta nel fascio laser. Diremo che w_0 è la dimensione di macchia (standard) o *spot size* del fascio laser

Proprietà dei fasci laser (PROFILO TRASVERSALE e modi di ordine superiore TEM_{pq})

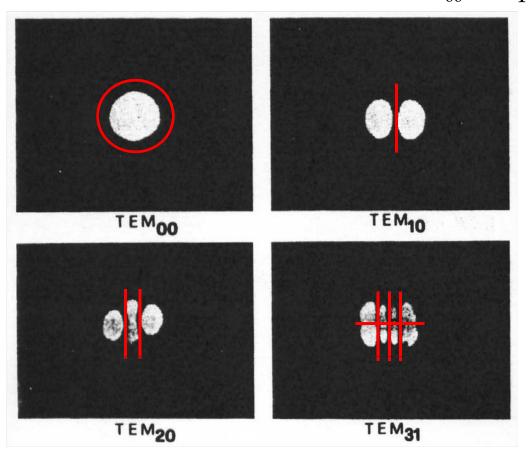
• Più in generale il profilo trasversale del campo elettrico (modo trasversale) può essere descritto dal prodotto di due polinomi (di Hermite), nelle direzioni x e y, e di una curva gaussiana 2D a simmetria radiale. L'indice, e quindi il grado, dei due polinomi individua l'**ordine del modo: TEM** $_{lm}$

$$E = E_0 H_1 \left(\frac{\sqrt{2}x}{w_0} \right) H_m \left(\frac{\sqrt{2}y}{w_0} \right) \exp \left[-\frac{x^2 + y^2}{w_0^2} \right]$$

$$H_0(x) = 1$$

 $H_1(x) = 2 x$
 $H_2(x) = 4 x^2 - 2$
 $H_3(x) = 8 x^3 - 12 x$
 $H_4(x) = 16 x^4 - 48 x^2 + 12$
 $H_5(x) = 32 x^5 - 160 x^3 + 120 x$

Polinomi di Hermite di ordine 0, 1, 2, ..., 5


Ordine zero = costante unitaria

Ordine pari/dispari comporta una simmetria pari/dispari

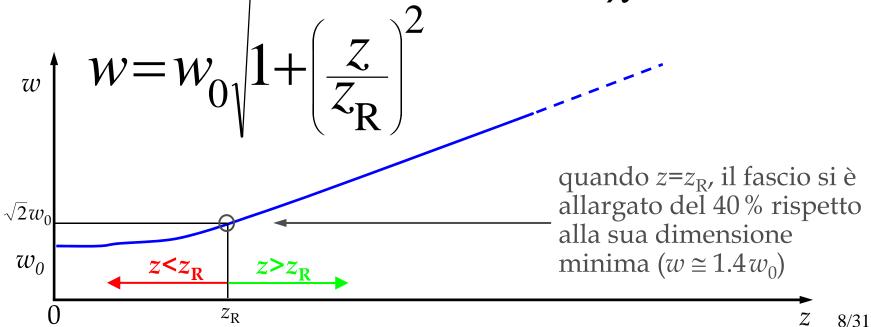
Proprietà dei fasci laser (PROFILO TRASVERSALE e primi modi di ordine superiore)

$$E = E_0 H_1 \left(\frac{\sqrt{2}x}{w_0} \right) H_m \left(\frac{\sqrt{2}y}{w_0} \right) \exp \left[-\frac{x^2 + y^2}{w_0^2} \right]$$
 L'ordine di ciascun polinomio ci dice **quanti zeri tagliano la gaussiana in un dato asse**

• Per l=0 e m=0 si ottiene il modo TEM₀₀ con profilo gaussiano (2D)

Anche per i modi superiori si definisce una dimensione di macchia ($spot \, size$) pari al raggio $w_{0,lm}$ del cerchio che contiene l'86.5% dell'intera potenza del modo

All'aumentare dell'ordine del modo aumenta anche la dimensione di macchia (di fatto peggiora la qualità spaziale del fascio)

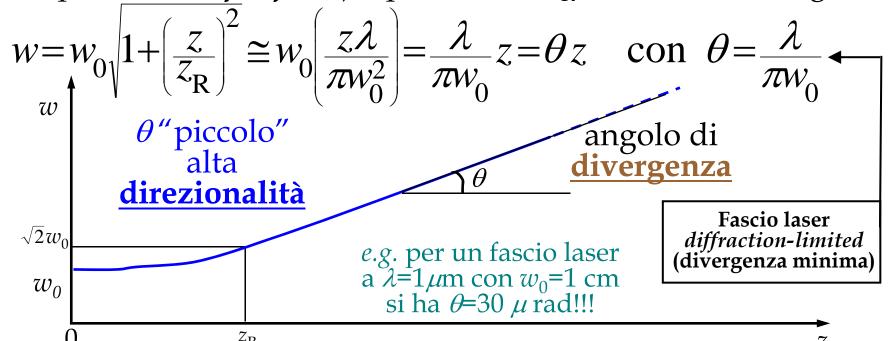

poi $w_0 \to w(z)$... 7/31

Propagazione libera (in aria)

• "Allargamento di macchia" (divergenza)

$$w^2 = w_0^2 + \left(\frac{\lambda z}{\pi w_0}\right)^2$$
 "w cresce" nella propagazione del fascio/modo lungo l'asse z

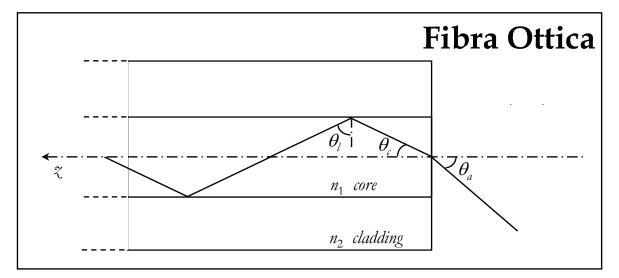
Si definisce **distanza di Raileigh** $z_R = \frac{\pi w_0^2}{\lambda}$


Near/far field e divergenza

• Si individuano due regioni di lavoro:

campo vicino (*near field*) quando $z << z_R$ e "il fascio è collimato"

$$w = w_0 \sqrt{1 + \left(\frac{z}{z_R}\right)^2} \cong w_0$$


campo lontano (far field) quando $z>>z_R$ e "il fascio diverge" lin.

In un fascio **multimodo** con *spot size* w_0 si ha una divergenza $\theta_{\rm MM} > \theta_{\rm DL} = \lambda / \pi w_0^2$ e si definisce un fattore $M^2 = (\theta_{\rm MM}/\theta_{\rm DL})^2 > 1$ che indica la qualità spaziale del fascio 9/31

Propagazione guidata (fibra)

- Modo guidato HE₁₁
- Bassa attenuazione α <0.2 dB/km a 1.55 μ m (= -5%/km)

Fibra **SM**

n≅1.45

∆*n*≅5×10⁻³

 $\phi_{core} = 9 \, \mu \text{m}$

 ϕ_{clad} =125 μm

 $NA = \sin \theta_a = \sqrt{n_1^2 - n_2^2} = \sqrt{(n_1 + n_2)(n_1 - n_2)} = \sqrt{2n\Delta n}$

Apertura Numerica

Problemi: Dispersione cromatica [ps/(nm×km)] Dispersione di polarizzazione [ps]

Proprietà dei fasci laser (RUMORE DI AMPIEZZA)

• Campo elettrico nel tempo con <u>fluttuazioni di ampiezza</u>

$$E(t) = E_0[1 + a(t)] \exp\left[-j2\pi v_0 t\right] \qquad \text{con } a(t) << 1$$

 Da un'analisi perturbativa del sistema laser (in risposta a piccole variazioni del tasso di pompaggio o delle perdite di cavità) si evidenzia il fenomeno delle oscillazioni di rilassamento

- frequenza di oscillazione
$$f_{RIN} = \left[\frac{x-1}{\tau_c \tau_{sp}}\right]^{1/2}$$
 $(x = P/P_{th} \grave{e} il soprasoglia)$

- tempo di smorzamento (esponenziale)
$$\tau_{RIN} = \frac{2\tau_{sp}}{x}$$

Necessità di sistemi di stabilizzazione (passiva/attiva)

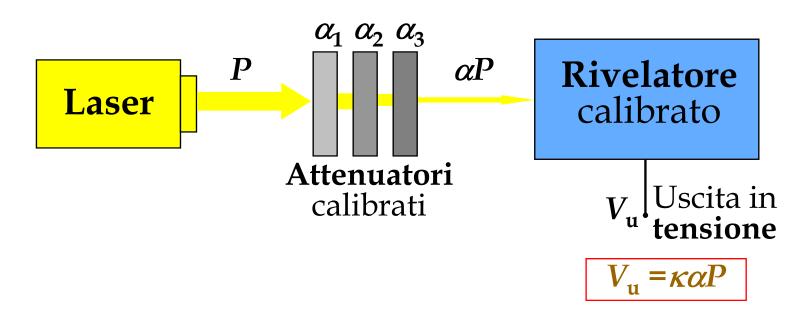
Proprietà dei fasci laser (RUMORE DI FREQUENZA)

• Campo elettrico nel tempo con <u>fluttuazioni di frequenza</u>

$$E(t) = E_0 \exp\{-i \left[2\pi v_0 t - \phi(t) \right] \right\} \quad \text{con } 1/(2\pi) \, d\phi/dt = \Delta v << v_0$$

$$v(t) = \left[1/(2\pi) \right] \, d\phi_{\text{tot}}/dt = v_0 - (1/2\pi) \, d\phi/dt = v_0 - \Delta v$$

• Dall'espressione delle autofrequenze del risonatore:


$$v = m \cdot \frac{c}{2L}$$
 \Rightarrow $\Delta v = m \cdot \frac{c}{2L^2} (-\Delta L)$ \Rightarrow $\frac{\Delta v}{v} = -\frac{\Delta L}{L}$

- Forte <u>dipendenza della frequenza laser da L</u>
 - e.g. per un laser a Nd:YAG (λ =1.064 μm, ν ≃300 THz) con L=30 cm se ΔL =-1 μ m, si ha $\Delta \nu$ =1 GHz!!!

Necessità di sistemi di stabilizzazione (passiva/attiva)

Potenza ottica (DEFINIZIONI e METODI DI MISURA)

- E Campo elettrico [V/m]
- $I = \frac{EE^*}{\eta_0}$ Intensità [W/m²] $\eta_0 = (\mu_0/\varepsilon_0)^{1/2} = 377 \Omega$ impedenza caratteristica del vuoto
- $P = \int I dS$ Potenza [W]

Rivelatori foto-voltaici / conduttivi

(Si, HgCdTe, Ge, GaAs, GaAsP, InGaAs) $0.1\mu\text{m} \le \lambda \le 10\mu\text{m}$

Efficienza quantica
flusso fotoni
(fot./s)

Responsivity
$$\rho = \frac{i}{P} \quad \text{(A/W)}$$

$$\rho = \frac{i}{P} \quad \text{(A/W)}$$

$$\rho = \frac{e\Delta N_e}{\Delta t}$$

$$\rho = \frac{d\Delta N_e}{\Delta t}$$

$$\rho = \frac$$

Fotodiodi (uscita in corrente)

Se un fascio ottico (uniforme) di intensità luminosa I (W/m²) incide su un fotorivelatore con superficie di raccolta S (m²), la potenza ottica raccolta sarà

$$P = I \cdot S$$
 (W)

Se il fotorivelatore è un fotodiodo, si ottiene in uscita un segnale di corrente direttamente proporzionale alla potenza ottica incidente sul rivelatore di luce:

$$i = \rho \cdot P$$
 (A)

dove il fattore di proporzionalità tra la corrente fotorivelata e la potenza ottica incidente è la **sensibilità** ("**responsività**") ρ (**A/W**) del materiale di cui è fatto il fotodiodo (ρ_{Si} ~0.5 A/W nel visibile e ρ_{InGaAs} ~0.8 A/W nel vicino infrarosso)

Fotorivelatori (uscita in tensione)

La **corrente** del fotodiodo viene solitamente **amplificata a transimpedenza**, diciamo con guadagno $G_{i\rightarrow v}(V/A) = R(\Omega)$, per produrre un segnale in tensione

$$v = G_{i \to v} \cdot i = G_{i \to v} \cdot \rho \cdot P \quad (V)$$

che dunque risulta direttamente proporzionale alla potenza (o intensità) ottica incidente, ovvero al modulo quadro del campo elettrico (a frequenze ottiche) raccolto sul rivelatore:

$$v \propto P \propto I \propto EE^* = |E|^2$$

Delle variazioni nel tempo del campo elettrico del segnale ottico si possono osservare sul segnale di tensione solo quelle variazioni le cui frequenze cadono nella banda passante del fotorivelatore (fotodiodo + amp. transimp.)

Rivelazione diretta

Consideriamo un fascio laser con campo elettrico

ampiezza (V/m) frequenza (THz)
$$E(t) = E_0[1 + a(t)] \exp[-j(2\pi v_0 t + \phi(t))]$$
mod. ampiezza legate al mod. fase/freq. (eventuale) segnale di misura

La tensione fotorivelata "direttamente" è

$$v(t) \propto EE^* = (E_0)^2 [1 + a(t)]^2 \propto P(t) = P_0 \alpha(t)$$

Si perde completamente l'informazione sulla variazione di fase/frequenza del segnale ottico, mentre rimane una sensibilità alle variazioni (attenuazioni) di potenza ottica

Battimento di due segnali ottici

Consideriamo due fasci laser incidenti sul fotorivelatore e, per semplicità, trascuriamo le fluttuazioni di ampiezza

$$E_{\rm R}(t) = E_{\rm R0}[1 + a(t)] \exp[-j(2\pi v_0 t + \phi(t))]$$
 SEGNALE mod. ampiezza mod. fase/freq.

$$E_{\rm L}(t) = E_{\rm L0} \exp[-j(2\pi v_{\rm L} t)]^{\rm Per \ comodita}_{\rm si \ sceglie \ \phi_{\rm L}=0}$$
 OSCILLATORE LOCALE

Considerando campi elettrici polarizzati linearmente e nella stessa direzione, il campo risultante dalla sovrapposizione (e somma) dei due segnali ottici è

$$E(t)=E_{\rm R}(t)+E_{\rm L}(t)$$

Rivelazione coerente (eterodina)

La **potenza ottica** corrispondente vale

$$P(t) = \frac{EE^{*}}{\eta_{0}} \cdot S = \frac{S}{\eta_{0}} \{ (E_{R}E_{R}^{*}) + (E_{L}E_{L}^{*}) + (E_{R}E_{L}^{*}) + (E_{L}E_{R}^{*}) \} = \frac{S}{|E| \cdot \sqrt{\frac{S}{\eta_{0}}} = \sqrt{P}}$$

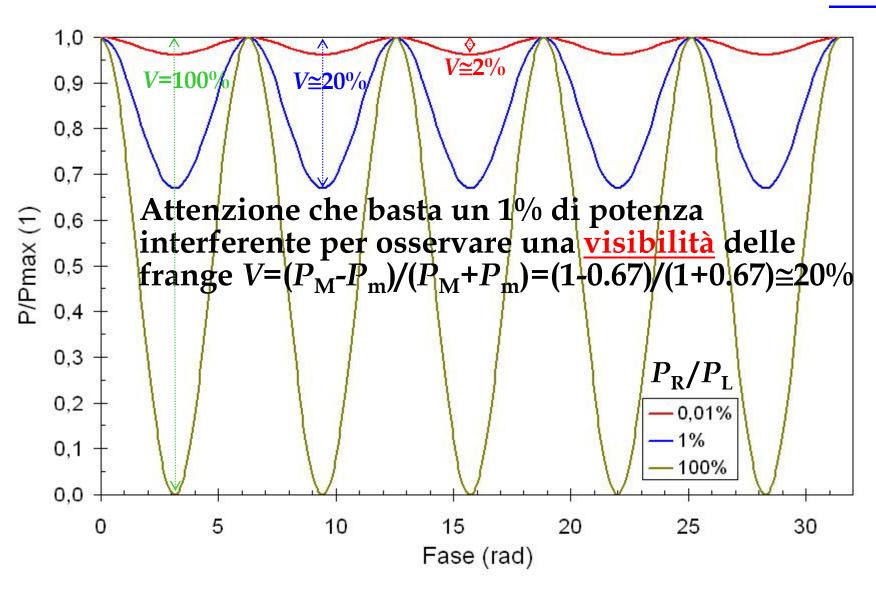
$$= P_{\rm R} + P_{\rm L} + \frac{S}{\eta_0} (E_{\rm R0} E_{\rm L0}) \exp\{-j[2\pi(\nu_0 - \nu_{\rm L})t + \phi(t)]\} + \text{c.c.} = \frac{\eta_0}{\eta_0}$$
interferenza
frequenza di battimento

$$= P_{\rm R} + P_{\rm L} + 2\sqrt{P_{\rm R}P_{\rm L}}\cos[2\pi(v_0 - v_{\rm L})t + \phi(t)]$$

e dipende dalla fase ϕ del segnale da rivelare

Al variare della fase $\phi(t)$ si ottiene oscillazione tra $P_{\text{max}} = [(P_{\text{R}})^{1/2} + (P_{\text{L}})^{1/2}]^2$ e $P_{\text{min}} = \{ \text{abs}[(P_{\text{R}})^{1/2} - (P_{\text{L}})^{1/2}] \}^2$ Di fatto **si sommano i campi**, ovvero $P^{1/2}$

$$|E| \propto \sqrt{P}$$


Nel caso particolare in cui $E_{R0} = E_{L0} = E_0$ e dunque $P_R = P_L = P_0$ si ha una "interferenza completa tra i due segnali":

$$P_{\text{max}} = 4P_0 \text{ e } P_{\text{min}} = 0 \text{ operando con 2 BS al 50% si ha } P_{\text{R}} = P_{\text{L}} = P_0 = P_{\text{laser}}/4$$

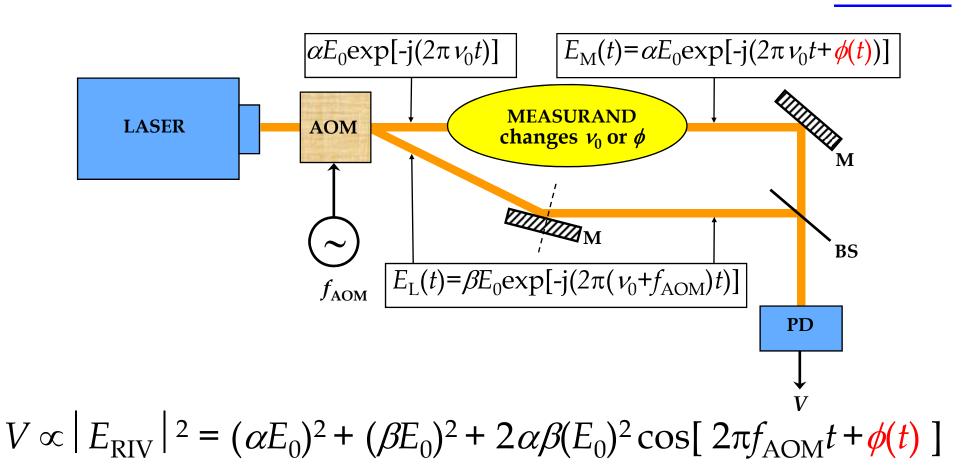
Diapositiva 19

incluso questo lucido è terminata la 4a lez 05-06 in aula N.1.3 Cesare Svelto; 27/03/2006 CS10

Interferenza per diversi rapporti P_R/P_L

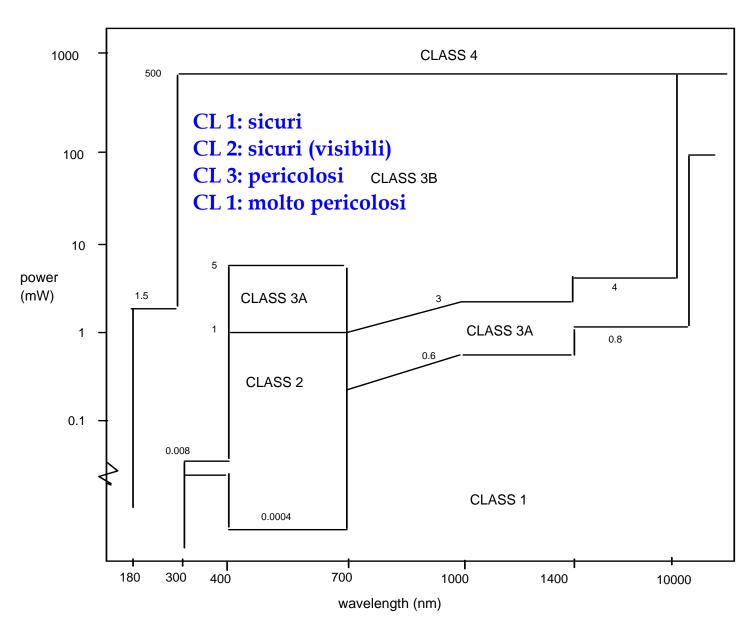
Misure con rivelazione coerente

La **componente variabile della potenza ottica**, e dunque della tensione fotorivelata, è **funzione della fase** $\phi(t)$ del segnale ricevuto $E_{\rm R}(t)$


Un **misurando** M (grandezza di influenza) in grado di alterare la fase $\phi(t)$ o la frequenza $v = (1/2\pi)(d\phi/dt)$ del segnale ricevuto potrà essere **rivelato in maniera coerente** e misurato **osservando le variazioni della fase/freq. del segnale di battimento** alla frequenza intermedia $v_{\rm IF} = (v_{\rm R} - v_{\rm L})$, che può comodamente cadere in una banda spettrale a radiofrequenza (decine o centinaia di megahertz)

Operando una rivelazione coerente e osservando la fase del segnale a frequenza intermedia, si può ottenere una **misura proporzionale a sin**[$\phi(t)$] che, per "piccole variazioni" del misurando (dM/dt tale che $d\phi/dt$ <1), risulta **direttamente proporzionale a** $\phi(t)$ **e dunque alle variazioni di** M. (in questo caso si dice che l'<u>interferometro</u> sta operando <u>"in quadratura"</u>)

Diapositiva 21


incluso questo lucido è terminata la 5a lez 04-05 in aula N.1.6 Cesare Svelto; 03/04/2005 CS6

Esempio di schema di battimento laser

Il segnale V di fototensione oscilla a frequenza $f_{\rm AOM}$, mantenendo la dipendenza dalle fluttuazioni di fase/frequenza ottica introdotte dal misurando

Diagramma di laser safety

Sicurezza laser (laser safety) (1/2)

Classe 1

• a) Utilizzo senza prescrizioni

Classe 2 [[solo per λ visibile]] (visione diretta praticamente sicura)

- a) Evitare una visione continua del fascio diretto (riflesso palpebrale!)
- b) Non dirigere il fascio laser deliberatamente sulle persone

Classe 3A (visione diretta poco pericolosa)

- a) Evitare l'uso di strumenti ottici quali binocoli o teodoliti
- b) Affiggere un segnale di avvertimento laser
- c) Allineamento laser tramite mezzi meccanici o elettronici
- d) Terminare il fascio laser in una zona esterna al luogo di lavoro o delimitare tale zona
- e) Fissare la quota del raggio laser molto al di sopra o al di sotto dell'altezza dell'occhio
- f) Evitare che il fascio laser sia diretto verso superfici riflettenti
- g) Immagazzinare il laser portatile, quando non in uso, in un luogo inaccessibile alle persone non autorizzate

Sicurezza laser (laser safety) (2/2)

Classe 3B (visione diretta sempre pericolosa; visione luce diffusa potenzialmente pericolsa)

Può causare danni a un occhio non protetto. Valgono le precauzione della classe 3A e inoltre

- •a) Funzionamento solo in zone controllate dagli operatori
- •b) Evitare assolutamente riflessioni speculari
- •c) Far <u>terminare il fascio</u> su un materiale assorbente atto a disperdere calore
- •d) Indossare le protezioni oculari (occhiali schermanti!)

Classe 4 (visione diretta molto pericolosa; visione luce diffusa pericolsa)

<u>Causa danni all'occhio</u> sia con fascio diretto, che con riflessioni speculari e diffuse. Rappresenta anche un <u>potenziale pericolo di bruciature o incendio</u>. Valgono le precauzione della classe 3B e inoltre

- •a) <u>Tragitti dei fasci protetti</u> da un riparo
- •b) Durante il funzionamento, presenza solo di personale tecnico munito di protettori oculari idonei e vestiti protettivi appositi
- •c) Per evitare la presenza di personale sarebbe preferibile se gli apparati laser fossero comandati a distanza
- •d) Preferibili bersagli metallici non piani e adeguatamente raffreddati, come i coni assorbitori
- •e) Per evitare riflessioni indesiderate nella parte invisibile dello spettro (per la radiazione laser situata nell'infrarosso lontano) il fascio e la zona di impatto dovrebbero essere avvolte da un materiale opaco per la lunghezza d'onda del laser

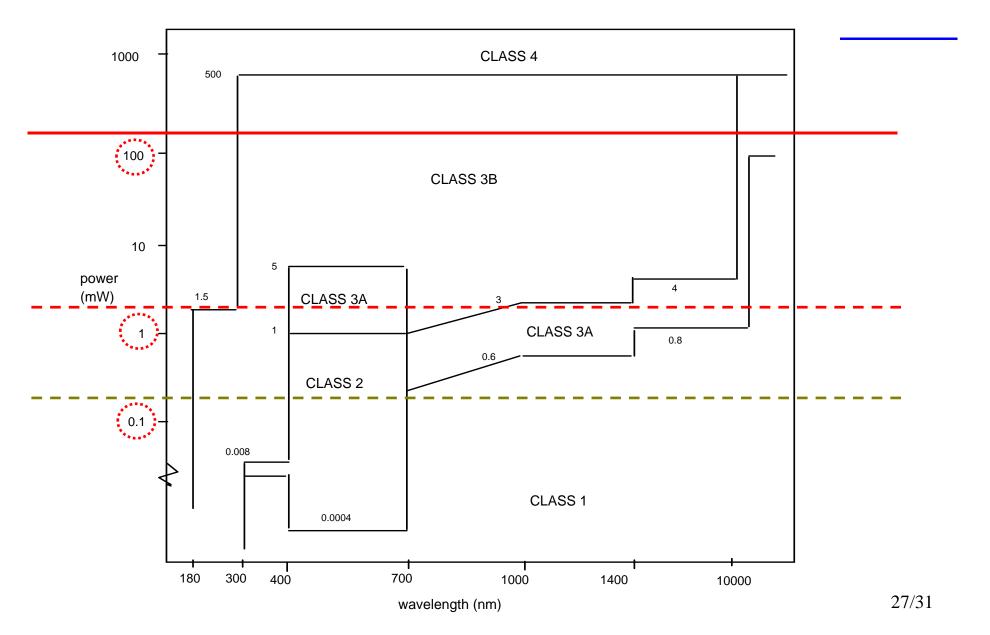
Protezioni laser

Protezione degli occhi

• Un protettore oculare previsto dalla normativa (occhiali schermanti: $OD=log_{10}[1/T]$) per assicurare una protezione adeguata contro le radiazioni laser specifiche deve essere utilizzato in tutte le zone pericolose dove sono in funzione laser della classe 3 e 4.

Vestiti protettivi

• Da prevedere nel caso il personale sia sottoposto a livelli di radiazione che superano le EMP (esposizione massima permessa) per la pelle (i laser di classe 4 rappresentano un potenziale pericolo di incendio e i vestiti di protezione devono essere fabbricati con materiali appositi).


Formazione

• I laser di classe 3 e 4 possono rappresentare un pericolo non solo per l'utilizzatore, ma anche per altre persone, seppure a considerevole distanza. Il **personale** che opera con questi laser deve avere **adeguata preparazione** al fine di rendere minimo il rischio professionale.

Sorveglianza medica

• **Esami oculistici**, di preimpiego e durante l'impiego, dovrebbero essere eseguiti limitatamente ai lavoratori che utilizzano laser di classe 3 e 4.

Diagramma di laser safety

Applicazioni industriali dei laser

Lavorazioni di materiali

Foratura, taglio, saldatura, trattamenti termici, etc.

Misure industriali, civili ed ambientali

- Settore industriale: <u>interferometri laser per metrologia</u> <u>dimensionale</u>, misuratori di diametri di fili, granulometri, rugosimetri, sistemi di rilievo di campi di deformazione.
- Settore civile: sistemi laser di allineamento e livelle laser, telemetri topografici e geodimetri.
- Settore ambientale: LIDAR per telerilevamento di inquinanti.
- Settore della presentazione: laser per la visualizzazione di ologrammi, laser pointer per conferenze, sistemi laser per didattica.
- Settore giochi di luce: laser per effetti speciali in discoteche, mostre spettacoli all'aperto e simili.
- Settore beni durevoli: <u>lettori al laser di codici a barre</u>, lettori di <u>compact disk</u>, stampanti laser e simili.

Applicazioni dei laser in TLC, Medicali e nella Ricerca di base

Telecomunicazioni e fibre ottiche

 Sorgenti laser a semiconduttore per applicazioni, tramite fibra ottica, nella trasmissione ed elaborazione ottica di dati

Applicazioni mediche

- Applicazioni dei laser in *Oftalmologia*
- Applicazioni cliniche dei laser in *Chirurgia Generale*
- Applicazioni cliniche dei laser in *Chirurgia con microscopio* operatorio
- Applicazioni cliniche dei laser in *Chirurgia Endoscopica*

Applicazioni nei laboratori di ricerca

- Ottica non lineare
- Spettroscopia lineare e non lineare
- Interazione radiazione materia
- Precision Measurements

Conclusioni

- Principi fisici e dispositivi per l'azione laser
- Strutture di laser a stato solido e a semiconduttore
- Principali caratteristiche e applicazioni dei laser
- Propagazione libera e guidata
- Proprietà dei fasci laser (profilo, rumore amp. e freq.)
- <u>Potenza ottica</u> e <u>fotorivelazione</u>
- Applicazioni e sicurezza laser

LASER "brillante soluzione in cerca di un problema"

Strumenti laser: oggi largo uso in ricerca, tecnologia e produzione, misure ottiche

Riferimenti bibliografici

- A. Yariv, Quantum Electronics, 3th ed., Wiley, New York, 1989
- A. E. Siegman, Lasers, Oxford University, Cambridge, 1986
- O. Svelto, *Principles of Lasers*, 4th ed., Plenum, New York, 1998 (dal quale sono tratte alcune figure di questo Capitolo)
- W. Koechner, Solid-State Laser Engineering, 4th ed., Springer, Berlin, 1996