"Optical Measurements"

Master Degree in Engineering Automation-, Electronics-, Physics-, Telecommunication- Engineering

Optical Telemeters

Prof. Cesare Svelto
 Politecnico di Milano

Summary

- Measurement principles and applications
- Triangulation
- passive
- active
- Time Of Flight (TOF)
- pulsed
- Continuous Wave (CW) [with sine modulation]
- power budget of a laser telemeter and system equations
- timing and optimal filtering, noise and accuracy, ambiguity
- optics (launch/receiving), instrumental development
- LIDAR (LIght Detection And Ranging)

Measurement principles in Telemetry (1/2)

- tele-metry $=$ distance-measurement (or also measurement at distance) we measure the distance \underline{L} between the instrument and a remote target (range-finding and range-finder)

1) by triangulation (trigonometric method)
the target is "triangulated" from two points apart D on the same baseline (see measurement of the distance of the stars); measuring the angle between the two lines of sight one gets the distance as $L \cong D / \underline{\alpha}(L=D / \operatorname{tg} \alpha)$
2) by Time Of Flight (measurement by counting a time interval)
pulsed laser or CW sine modulated $\left(f_{\mathrm{m}}\right)$ laser
$\underline{T}=2 L / c \Rightarrow L=c / 2 \cdot T \propto T$ ("2L" for a round-trip path)
$\underline{\Delta \varphi}=2 \pi f_{\mathrm{m}} \cdot T \Rightarrow \Delta \varphi / 2 \pi=f_{\mathrm{m}} /(c / 2 L) \Rightarrow$
$L=c / 2 \cdot \Delta \varphi / 2 \pi f_{\mathrm{m}}=\lambda_{\mathrm{m}} / 2 \cdot \Delta \varphi / 2 \pi \propto \Delta \varphi \quad$ "counting in terms of $\lambda_{\mathrm{m}} / 2$ " (measurement depends on res./acc. on T and $\Delta \varphi$, for CW also on $f_{\mathrm{m}} \mathrm{e} \lambda_{\mathrm{m}}$)

Measuement principles in Telemetry (2/2)

- tele-metry $=$ distance-measurement (or also measurement at distance) we measure the distance \underline{L} between the instrument and a remote target

3) by interferometry (by means of counting optical wavelengths) a laser beam (monochromatic) is sent to the target and the returning light is coherently detected, by beat note analysis on a photodetector; the detected signal goes as $\cos (2 k L)$, with $k=2 \pi / \lambda$, and from the phase of the cosine function we can "count" the distance increment in terms of $\lambda / 2$ and its fractions, from 0 to L or for small variations ΔL starting from a fixed L^{*}

$$
\begin{aligned}
\underline{\Delta \varphi}=2 k L \Rightarrow \Delta \varphi=2 \cdot(2 \pi / \lambda) \cdot L \Rightarrow & L=\lambda / 2 \cdot \Delta \varphi / 2 \pi \propto \Delta \varphi \\
& \text { "counting } L \text { in terms of } \lambda / 2 " \\
\underline{\cos [2 \pi \cdot L /(\lambda / 2)]} & (\text { resolution depends on laser's } \lambda)
\end{aligned}
$$

with λ typically $\approx 0.5 \mu \mathrm{~m}$ (VIS)
we count L in terms of $\Delta L=\lambda / 2=250 \mathrm{~nm}$ (resolving "just" $\Delta \varphi=2 \pi$) but with $\Delta \varphi=\pi$ o $\pi / 2$ we obtain $\Delta L=125 \mathrm{~nm}$ or $\sim 60 \mathrm{~nm}$ and less...

Measurement fields for Optical Telemeters

Distance and displacement measurements

Measurement method by triangulation

- Triangalatione
- Passive

- $A \pi|V|$

$$
\begin{aligned}
& \frac{D}{L}=\operatorname{tg} \alpha \approx \alpha \text { se } \alpha \ll 1 \\
& L=\frac{D}{\operatorname{tg} \alpha} \cong \frac{D}{\alpha}
\end{aligned}
$$

- Measurement becomes less accurate over long distance (in practice for $L \gg D$). In fact, if the detection angle gets small $\left(\alpha<10 \mathrm{mrad} \approx 0.5^{\circ}\right.$) rel. uncertainty $\Delta \alpha / \alpha$ increases

Passive optical triangulator

"Optical lever" on the mirror

1. $\gamma+\beta=90^{\circ}$
2. $\alpha+2 \beta=90^{\circ}$
3. $\gamma-\delta=45^{\circ}$
from 1.-3. we get $\beta+\delta=45^{\circ}$ from 2./2 we get $\alpha / 2+\beta=45^{\circ}$ subtracting the two members, do obtain $\boldsymbol{\delta}=\alpha / 2$

Resolution and accuracy in a passive optical triangulator (examples)

- Accuracy/resolution of distance (L) measurement depend on accuracy/resolution of the angle (α) measurement
- For example, with a micrometrical screw goniometer we can resolve $\Delta \alpha \approx 3 \operatorname{mrad}\left(0.17^{\circ}\right)$ while with an angular encoder we can achieve $\Delta \alpha \approx 0.1 \mathrm{mrad}\left(0.0057^{\circ}\right)$

Ex.: for $L=1 \mathrm{~m}$ we choose $D=10 \mathrm{~cm} \Rightarrow \alpha \cong D / L=0.1 \mathrm{rad}$

$$
\frac{\Delta L}{L}=\begin{gathered}
3 \% \\
0.1 \% \\
\text { screw } \\
\text { encoder }(3 \mathrm{~cm}) \\
(1 \mathrm{~mm})
\end{gathered}
$$

if for $L=100 \mathrm{~m}$ we choose $D=1 \mathrm{~m} \Rightarrow \alpha=D / L=0.01 \mathrm{rad}$

$$
\frac{\Delta L}{L}=\begin{array}{cll}
30 \% & \text { screw } & (30 \mathrm{~m})
\end{array} \begin{aligned}
& \text { it would be insane to } \\
& 1 \%
\end{aligned} \begin{aligned}
& \text { encoder }(1 \mathrm{~m})
\end{aligned} \begin{aligned}
& \text { keep } D=10 \mathrm{~cm} \text { because } \\
& \text { it would be } \alpha=1 \mathrm{mrad}
\end{aligned}
$$

- Performance is good until D / L is not too small and hence for medium-short ranges ($L=0.1-10 \mathrm{~m}$)

"Active" (laser) optical triangulator

- We remove moving parts (no goniom. With respect to passive triangulator) and we achieve a very quick and accurate response, very repeatable
- We use visible λ for simplicity of "target viewing" (He-Ne at 633 nm or LD-VIS or Nd:YAG2x)
- The laser beam undergoes a round trip path from telemeter to target. Misura 1D measurement with optical position sensor (2Q/PSD/CCD) of the angle α between going and returning beam. Receiving optics is off-axis at a distance D from launching optics: we then retrieve $L=D / \tan \alpha$

Laser triangulator or active triangulator

Image from a thin lens under "geometrical optics" [basics]

$\frac{1}{p}+\frac{1}{q}=\frac{1}{f}$
For an object at distance $p=f$ (focal length) from the lens, image is formed to the "infinity" i.e. at a distance $q=\infty$

Dimensioning of the laser spot size in the active triangulator [calculus steps]

Measurement equations for the active optical triangulator $(1 / 2)$

Let x be the distance of the received spot on the CCD from the receiving lens optical axis (which is off-set at a fixed distance, D, from the launching optical axis)

For a variation $L \pm \Delta L$ we get a corresponding var. $\alpha \mp \Delta \alpha$ and $x \mp \Delta x$ (the lens converts α into x and $\Delta \alpha$ into Δx)

Measurement equations for the active optical triangulator (2/2)

L measured from the position x on the CCD is

$$
L=\frac{D}{\alpha} \underset{\text { rec }}{x} \rightarrow \frac{1}{\alpha}
$$

hence, by differentiating in L and in x, we get

$$
\Delta L=-\frac{D}{x^{2}} f_{\text {rec }} \Delta x \quad \begin{aligned}
& \begin{array}{l}
x \text { is now electronically measured by a CCD } \\
\text { and we don't use a goniometer to measure } \alpha \\
\text { As for the passive triangulator formula } \\
\text { but with } x \text { e } \Delta x \text { instead of } \alpha \text { and } \Delta \alpha
\end{array}
\end{aligned}
$$

e infine
$\frac{\Delta L}{L}=-\frac{\Delta x}{x}=-\frac{\Delta \alpha}{\alpha}$

$$
\Delta L=-\frac{L^{2}}{f_{\text {rec }} D} \cdot \Delta x \propto L^{2} \quad \frac{\Delta L}{L} \propto L
$$

once again as for the passive optical triangulator

Exercise on the laser triangulator ("known" formulas: only calculations)
DATA: as in the case of passive optical triangulator, we work with $D=10 \mathrm{~cm}$ (and $f_{\text {rec }}=25 \mathrm{~cm}$) for $L=1 \mathrm{~m}$ and we now consider $w_{\mathrm{L}}=5 \mu \mathrm{~m}$ and $w_{\mathrm{CCD}}=10 \mu \mathrm{~m}$:

$$
x=-\frac{D}{L} f_{\text {rec }}=\frac{10 \mathrm{~cm}}{1 \mathrm{~m}} 250 \mathrm{~mm}=25 \mathrm{~mm}
$$

If we resolve $\Delta x=10 \mu \mathrm{~m}\left(\approx w_{\mathrm{CCD}}\right)$ on the photodetector,

$$
\frac{\Delta L}{L}=\left|\frac{\Delta x}{x}\right|=\frac{10 \cdot 10^{-3}}{25}=4 \cdot 10^{-4} \quad\left(\begin{array}{l}
(\text { for } L=400 \mu \mathrm{~m})
\end{array}\right)
$$

$$
|\Delta \alpha|=4 \cdot 10^{-4} \alpha \cong 4 \cdot 10^{-4} \frac{D}{L}=40 \mu \mathrm{rad}
$$

Remind how for the passive triangulator we had $\Delta \alpha \approx 3 \mathrm{mrad}$ (micro-screw goniometer) and $\Delta \alpha \approx 0.1 \mathrm{mrad}$ (angular encoder)/58

Exercise on the active triangulator

 (with data, calculations and steps to get $w_{\text {rec }}$)

Interpolation in the laser triangulator

Spatial resolution Δx on the CCD limits angular resolution $\Delta \alpha$ and hence resolution ΔL in the measurement of distance L

Exploiting the spatial extension of the laser spot on the CCD, we can interpolate over more bright pixels and resolve even a sub-pixel laser spot position (e.g. $\Delta x=0.2 w_{\mathrm{CCD}}$ or even less) with the resulting improvement in angular and distance resolution

EXERCISE (for home...):
Using a laser triangulator with Gaussian laser spot large $w_{\text {rec }}=50 \mu \mathrm{~m}$ on a 1024 pixel CCD (with 12 bit amplitude resolution and $w_{\mathrm{CCD}}=10 \mu \mathrm{~m}$), we want to retrieve the position of the "spot center" obtained by interpolating over bright pixels

Exercise on the laser triangulator
QUESTIONS:

- if the telemeter laser is an He-Ne laser at 633 nm , what kind of CCD we should use? why?
- how many and which pixels on the CCD are "well lit" when the "background light" covers 1/100 (in amplitude) of the measurement dynamic range?
- how shall me measure the position of the spot center on the CCD? How much wide is the "visible" spot?
- which are the practical limits to the accuracy?
- Imagine we can achieve a resolution of 0.1 pixel: calculate the absolute resolution of the telemeter at the minimum measurable distance $L_{\text {min }}=10 \mathrm{~m}$

Exercise on the laser triangulator

ANSWERS:

- for a red He-Ne laser we can conveniently use a Si CCD, sensible in the visible range and inexpensive
- To calculate how many and which pixels on the CCD are "well lit", we must before define what we mean for "well lit": since the single pixel can resolve $N=2^{n}=2^{12}=4096$ levels of photocurrent and hence incident optical power, we can say that a pixel is well lit ($S N R=1$) if the current signal is equal to the minimum detectable current (due to quantization or electronic noise of the receiver + "background light")
[in general one pixel is lit if its signal level brings its output voltage to a greater than zero (just quantization limit) or here the pixel is well lit when its "signal" level is $>1 / 100$ of the peak/dynamic-range of the whole optical signal (limits due to "noise" and background light)]

Exercise on the laser triangulator

The optical power on the single pixel is the optical intensity times the pixel area (precisely one should integrate the intensity over the pixel surface)
Optical intensity is decreasing as $\exp \left(-2 r^{2} / w_{\text {rec }}^{2}\right)$ getting farer from the peak (in $r=0$). So we obtain an $1 / M$ part of the peak value when $2 r^{2}=w_{\text {rec }}^{2} \ln (M)$ or equivalently $r / w_{\text {rec }}=(0.5 \ln M)^{0.5}=\left[0.5 \cdot 2.3 \cdot \log _{10} M\right]^{0.5}$

We hence can calculate
$r \approx k \cdot w_{\text {rec }}$ with $k=\left[0.5 \cdot 2.3 \cdot \log _{10} M\right]^{0.5}$
clearly $w_{\text {rec }}$ corresponds to a certain number of pixels and so r can be given by "counting pixels"

Exercise on the laser triangulator

with noise and background (at $1 / M=1 / 100$ from peak): we get $1 / 100$ of the peak value for $2 r^{2}=w^{2}$ rec $\ln (100)$ $r / w_{\text {rec }}=(0.5 \cdot \ln 100)^{0.5}=\left[1.15 \cdot \log _{10} 100\right]^{0.5}=[2.3]^{0.5} \approx 1.5$ and $r \cong 75 \mu \mathrm{~m}$ with a well-lit spot of about $150 \mu \mathrm{~m}$ diameter or 15 pixel for $1 / M=1 / 10$ of peak, $r \cong 1.1 \cdot w_{\text {rec }}$ just quantization: [as we know $\exp (-2)=13 \% \sim 1 / 10]$
we get $1 / 4096 \approx 1 / 4000$ of the peak value for
$2 r^{2}=w^{2} \operatorname{rec} \ln (4000)(\approx 4000$ amplitude levels for $n=12$ bit $)$
$r / w_{\text {rec }}=(0.5 \cdot \ln 4000)^{0.5}=\left[1.15 \cdot \log _{10} 4000\right]^{0.5}=[1.15 \times 3.6]^{0.5} \approx 2$
we hence obtain $r \approx 2 w_{\text {rec }}=2 \cdot 50 \mu \mathrm{~m} \cong 100 \mu \mathrm{~m}$ corresponding to 10 pixels each of size $10 \mu \mathrm{~m}$ (starting from the Gaussan center). The total number of well-lit pixels is finally 20 pixel (± 10), for a "visible" spot size (diameter) of approximately $200 \mu \mathrm{~m}$

Exercise on the laser triangulator using as pixel weight the corresponding voltage - The spot position on the CCD can be obtained by a weighted average of the points of the Gaussian profile, maybe after subtracting background level, and preferably by the average of only well-lit points; or by least squares fitting with function (Gaussian + offset): we can imagine achieving $\Delta x=0.1$ pixel $=1 \mu \mathrm{~m}$

- Limits to the accuracy are set by noise at the photodetector (ext. light, shot noise, CCD dark current, additional noise quantization/electronic) leading to a wrong estimate of the center position of ideal Gaussian
- The CCD is wide $x_{\text {max }}=1024 \cdot 10 \mu \mathrm{~m} \approx 1 \mathrm{~cm}$ and, considering that $\Delta x / x_{\max }=\Delta \alpha / \alpha_{\max }=-\Delta L / L_{\text {min }^{\prime}}$ the resolution of the measure is $\Delta L=L_{\text {min }}\left(\Delta x / x_{\text {max }}\right)=$ $=10 \mathrm{~m} \cdot(1 \mu \mathrm{~m} / 1 \mathrm{~cm})=1 \mathrm{~mm}\left[\right.$ at 10 m distance it is $\left.10^{-4}\right]$

Time Of Flight ("TOF") telemeters (principles and working equations)

Laser radiation undergoes a round-trip path $2 L$ (forth and back) in a time T, traveling at light speed $c \approx 3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$

$$
T=\frac{2 L}{c} \Rightarrow L=\frac{c}{2} T
$$

ΔL is constant depending only on the time resolution ΔT

Example: to get $\Delta L=\mathbf{1 m}$ we need $\Delta T=2 \cdot 1 \mathrm{~m} / 3 \cdot 10^{8} \mathrm{~m} / \mathrm{s} \cong 7 \mathrm{~ns} \approx \tau$ (limit for a Q-switched laser; for shorter τ values we need a mode-locked laser; power...) for $\Delta L=\mathbf{1 m m} \boldsymbol{\mathbf { m m }} \boldsymbol{\Delta T} \mathbf{7} \mathbf{p s} .$. difficult resolving sub-mm with conventional TOF 24/58

Time Of Flight telemeters (length and time resolution)

- in impulsata $\tau<\Delta T$

$$
\text { essendo } \Delta T=\frac{2 \Delta L}{c}
$$

Length resolution ΔL in th measurement depends on the time resolution ΔT and so on pulse duration
To resolve a time ("distance") interval ΔT we must work with pulse duration $<\approx \Delta T$ and so with "fast" photodetector electronics with bandwidth $B \approx(1 / \tau)$

Time Of Flight telemeters (time interval measurement)

The measurement of a time interval T is achieved with an electronic counter, "counting" the distance between $t_{\text {start }}$ (transmitted pulse) and $t_{\text {stop }}$ (pulse received), on the corresponding photodetected electronic signals.
Position of pulses on the time axis is determined by a threshold discriminator (trigger) on the voltage waveform/pulses

Not always an analogue t falls exactly on a clock transition. So the measurement of t has the discrete resolution T_{c} of the electronic counter, with uncertainty $u_{q}(t)=\sigma(t)=T_{c} / \sqrt{12}$

Time Of Flight telemeters (measurement uncertainty of $T=t_{\text {stop }}-t_{\text {start }}$)

Having uncertainty $u(t)=u_{\mathrm{q}}(t)$ both on $t_{\text {start }}$ and $t_{\text {stop }}$ then the combined accuracy on the measured time of fligh T is

$$
u(T)=\left[u^{2}\left(t_{\text {stop }}\right)+u^{2}\left(t_{\text {start }}\right)\right]^{1 / 2}=\sqrt{2} u_{\mathrm{q}}(t)=T_{\mathrm{C}} / \sqrt{6}
$$

If we start the clock, with period T_{C}, exactly at $t_{\text {start }}$ we then have $u\left(t_{\text {start }}\right)=0$ [clock pulses starting with $t=t_{\text {start }}$] and for the whole TOF we obtain $u(T)=u\left(t_{\text {stop }}\right)=T_{\mathrm{C}} / \sqrt{12}$

In general, by choosing the clock period T_{c} short enough, the measurement uncertainty will depend by other factors (much more significant than the "small quantization"): in particular from the amplitude noise at the trigger.
This noise depends on the circuit electronic noise and on the amplitude noise of the detected signal

Time Of Flight telemeters (threshold discrimination and noise: σ^{2})

The time of flight is measured as $T=t_{\text {stop }}-t_{\text {start }}$ and its variance is $\sigma^{2}(T)=\sigma^{2}\left(t_{\text {start }}\right)+\sigma^{2}\left(t_{\text {stop }}\right) \cong \sigma^{2}\left(t_{\text {stop }}\right) \quad t_{\text {stop }}$ is more noisy Detection of light pulse providing $t_{\text {stop }}$ is "more noisy" (with lower SNR) since the light signal returning from the target is much weaker than the transmitted signal $\sigma^{2}\left(t_{\text {stop }}\right) \gg \sigma^{2}\left(t_{\text {start }}\right)$

The location of pulses on time axis is obtained by a threshold discriminator (trigger) acting on the voltage signal $S(t)$ at the photodetector output

Amplitude noise σ_{s} becomes time noise σ_{t} with the slope in the trigger point

CW telemeters

(principle)

Optical power sine modulated at frequency $f_{\text {mod }}$ $\boldsymbol{P}(\boldsymbol{t})=\boldsymbol{P}_{\mathbf{0}}\left[\mathbf{1}+\boldsymbol{m} \cdot \sin \left(2 \pi f_{\text {mod }} \boldsymbol{t}\right)\right] \quad P_{0}$ is the average power

- in CW con modulasione sinnsoidale Si misura lo sfasamento tra il seguale niceunto e quello trasmesso
$\frac{\Delta \varphi}{2 \pi}=\frac{\Delta T}{T_{\bmod }}$
$\operatorname{con} \Delta T=\frac{2 L}{c}$ tempo di volo

We detect the phase delay $\Delta \varphi$ between detected signal $\left(P_{\mathrm{r}}\right)$ and transmitted signal $\left(P_{\mathrm{t}}\right)$

$$
L=c / 2 \cdot \Delta T=c / 2 \cdot T_{\bmod } \cdot \Delta \varphi / 2 \pi=c / 2 \cdot \Delta \varphi / 2 \pi f_{\bmod }
$$

CW telemeters (working equations)

La misura di distanta si ottiene come
$L=\frac{c}{2} \frac{1}{2 \pi f_{m o d}} \Delta \varphi=S^{-1} \Delta \varphi$
la sensibilitars della misura cresce
all'anmentare/della fund

sensitivity tells how $\Delta \varphi$ (direct measure) varies with a variation of the distance L

$$
S=\frac{\delta(\text { output })}{\delta(\text { input })}=\frac{\delta(\Delta \varphi)}{\delta(L)}=\frac{2 \pi f_{\bmod }}{c / 2} \propto f_{\mathrm{mod}}
$$

with $f_{\text {mod }}=10 \mathrm{MHz}$ and $\delta(\Delta \varphi)=2 \mathrm{mrad}\left(1.2^{\circ}\right)$ we get $\delta(\Delta L) \cong 5 \mathrm{~mm}$ Increasing $f_{\text {mod }}$ we can measure smaller ΔL

Measurement sensitivity (on the phase $\Delta \varphi$) gets higher for increasing modulation frequency, BUT if $f_{\text {mod }}$ is too high we can run into other problems (measurement ambiguity)

Power budget in optical telemeters

In practical applications $L \gg f_{s^{\prime}} f_{\mathrm{r}^{\prime}} D_{\mathrm{s}^{\prime}} D_{\mathrm{r}}$

Cooperative target (reflecting) (1/2)

When the target is cooperative, e.g. corner cube reflector, it behaves like a mirror and hence the receiver sees the target at a distance $2 L$
infinite plane reflecting surface

The beam spot size (diameter) at distance $2 L$ is $\theta_{\mathrm{s}} \cdot 2 L$ and hence the fractional received power (respect to transmitted power from the source), on a circular area with diameter D_{r} (receiving lens) set at distance $2 L$, is equal to

$$
\frac{P_{\mathrm{r}}}{P_{\mathrm{s}}}=\frac{(\pi \times 4) D_{\mathrm{r}}^{2}}{(\pi \times 4) \theta_{\mathrm{s}}^{2} 4 L^{2}} \quad \begin{aligned}
& \text { ratio of the receiver area to } \\
& \text { received beam spot size (area) } \\
& \text { areas ratio at the receiver }
\end{aligned} \quad \begin{aligned}
& \text { if all the } \\
& \text { receiver is } \\
& \text { lit }\left(D>D_{\mathrm{r}}\right)
\end{aligned}
$$

Cooperative target (reflecting) (2/2)

If the corner cube has a diameter smaller then the laser spot size on it ($D_{\mathrm{cc}}<\theta_{\mathrm{s}}$ L i.e. "only corner cube cutting the beam") and the receiver collects all reflected beam, we have

$$
\frac{P_{\mathrm{r}}}{P_{\mathrm{s}}}=\frac{\bar{D}_{\mathrm{cc}}^{2}}{\theta_{\mathrm{s}}^{2} L^{2}}
$$

$$
11 \text { reflected beam, we have }
$$

If in addition to the corner cube also the receiver is cutting the beam, we have again (like for the infinite plane reflector) areas ratio at the receiver

$$
\frac{P_{\mathrm{r}}}{P_{\mathrm{s}}}=\frac{D_{\mathrm{r}}^{2}}{\theta_{\mathrm{s}}^{2} 4 L^{2}}
$$

$$
\alpha_{1}=\frac{D_{\mathrm{c}}^{2}}{\left(\theta_{\mathrm{s}} L\right)^{2}} \quad \alpha_{2}=\frac{D_{\mathrm{r}}^{2}}{\left(2 D_{\mathrm{cc}}\right)^{2}} \quad \alpha=\alpha_{1} \cdot \alpha_{2}=\frac{D_{\mathrm{r}}^{2}}{\left(\theta_{\mathrm{s}} 2 L\right)^{2}}
$$

The condition of cutting receiver is valid when $D_{\mathrm{r}}<2 D_{\mathrm{cc}}$ ONLY when $D_{\text {cc }}<D_{\mathrm{r}} / 2$ we have only corner cube cutting the beam

Radiance of a Lambert diffusing surface

Diffusore lambertiano

Non-cooperative target (diffusing)

When the target is non-cooperative, the illuminated surface, with area A_{T}, is diffusing light with a diffusing coefficient $\boldsymbol{\delta}<\mathbf{1}$
la radionza del busoglio è 1/T volte la intensità attica (che sente attermatione \bar{e}

Diffusore Lambertiono "a $\cos \theta$ "

$$
B=\frac{1}{\pi} \delta \frac{P_{S}}{A_{T}}
$$

$$
B=\frac{P}{A \Omega}=L
$$

B is the target brightness

Non-cooperative target (diffusing)

Naming Ω_{r} the solid angle (θ_{r} the plane angle) by which light diffused from the target sees the receiver, we have

$$
\Omega_{\mathrm{r}}=\pi \theta_{\mathrm{r}}^{2}=\frac{\pi D_{\mathrm{r}}^{2}}{4 L^{2}} \quad \text { being } \theta_{\mathrm{r}}=\left(D_{\mathrm{r}} / 2\right) / L
$$

angle of sight of the receiver from the target
and hence the power collected at the receiver is

$$
P_{\mathrm{r}}=\Omega_{\mathrm{r}} \cdot B \cdot A_{\mathrm{T}}=\frac{\not D_{\mathrm{r}}^{2}}{4 L^{2}} \cdot \frac{\delta P_{\mathrm{s}}}{\not t A_{\mathrm{T}}} \cdot A_{\mathrm{T}}=\delta \frac{D_{\mathrm{r}}^{2}}{4 L^{2}} P_{\mathrm{s}}
$$

with a fractional received power

$$
\frac{P_{\mathrm{r}}}{P_{\mathrm{s}}}=\delta \frac{D_{\mathrm{r}}^{2}}{4 L^{2}} \quad \begin{aligned}
& \text { like for cooperative target } \\
& \text { but with } \delta \text { instead of } 1 / \theta_{\mathrm{s}}^{2} \\
& \text { and obviously } \delta \leq 1 \ll 1 / \theta_{\mathrm{s}}^{2}
\end{aligned}
$$

Solid angle $\Omega=\int \mathrm{d} \Omega=\int \frac{\mathrm{d} S}{R^{2}}=\int_{a}^{r} \frac{2 \pi \rho \cdot \mathrm{~d} \rho}{R^{2}}=\frac{2 \pi}{R^{2}} \int_{0}^{r} \rho \cdot \mathrm{~d} \rho=\frac{2 \pi}{R^{2}} \frac{r^{2}}{2}=\pi \frac{r^{2}}{R^{2}}=\pi \theta^{2}$

Def. \# Radian $\boldsymbol{\theta}$ \qquad is the plane angle subtended by a circular arc, as the length of the arc (r) divided by the radius of the arc (R) : $\theta=r / R$ (1 rad is the plane angle where the arc is equal to the radius).

Def. \# Steradian Ω is the solid angle subtended at the center of a sphere, as the area (S) of the cap divided by the squared radius of the sphere $\left(R^{2}\right): \Omega=S / R^{2}$

Power budget with diffraction and additional losses (optics and atmosphere)

Considering power losses due to Tx and Rx optics ($\boldsymbol{T}_{\text {opt }} \leq 1$) and round-trip (2L) propagation in the atmosphere ($T_{\text {atm }} \leq 1$)

$$
\begin{array}{ll}
{\left[\frac{P_{\mathrm{r}}}{P_{\mathrm{s}}}\right]_{\mathrm{C}}=T_{\text {opt }} T_{\mathrm{atm}} \frac{D_{\mathrm{r}}^{2}}{\theta_{\mathrm{s}}^{2} 4 L^{2}}} & \frac{P_{\mathrm{r}}}{P_{\mathrm{s}}}=G \cdot F O V_{\mathrm{eq}}^{2} \\
{\left[\frac{P_{\mathrm{r}}}{P_{\mathrm{s}}}\right]_{\mathrm{NC}}=T_{\text {opt }} T_{\mathrm{atm}} \delta \frac{D_{\mathrm{r}}^{2}}{4 L^{2}}} & \text { with } F O V_{\text {eq }}=\frac{D_{\mathrm{r}} / 2}{L_{\mathrm{eq}}}
\end{array}
$$

In the end we can write a general expression

$$
\frac{P_{\mathrm{r}}}{P_{\mathrm{s}}}=G \frac{D_{\mathrm{r}}^{2}}{4 L_{\text {eq }}^{2}} \quad G=\begin{aligned}
& T_{\text {opt }}^{2} / \theta_{\mathrm{s}}^{2} \text { cooperative } \\
& \text { equivalent } \\
& \text { GAIN }
\end{aligned} \quad \begin{aligned}
& L_{\text {eq }}=L / \sqrt{T_{\text {atm }}} \\
& \text { equivalent } \\
& \text { non-cooperative } \\
& \text { length }
\end{aligned}
$$

Gain of the optical telemeter

The optical telemeter gain can be $G \gg 1$ in the case of cooperative target (since $\theta_{\mathrm{s}} \ll 1$)
$G=T_{\text {opt }} / \theta_{\mathrm{s}}^{2} \approx 10^{6} \quad$ if $\theta_{\mathrm{s}}=1 \mathrm{mrad}$ and $T_{\text {opt }} \cong 1$
in this case the expression is analogous to the "gain of the antenna" in a radio transmission (where it is extremely important to have low divergence)

Instead, the optical telemeter gain is always $G<1$ in the case of non-cooperative target ($\delta_{\text {typ. }}=0.5-0.1$)

Good optics (antireflection coated at λ laser) allow reflection losses $<1 \%$, at each air-glass interface, and absorption + scattering losses in the material (glass or quartz) $<10^{-3} \Rightarrow$ whole transmission $T_{\text {opt }}>0.98-0.9 \cong 1$

Attenuation coefficient

During its propagation (in air), the laser beam undergoes absorption and diffusion losses due to molecules or particulate always present in the atmosphere

$$
\boldsymbol{T}_{\mathrm{atm}}=\exp (-\alpha 2 L)=P(z=2 L) / P(z=0) \begin{aligned}
& \text { from the law of } \\
& \text { Lambert-Beer }
\end{aligned}
$$

Carefully avoiding molecular absorption peaks, we can approximately adopt $\alpha=0.1 \mathrm{~km}^{-1}$ for a very clear atmosphere, $\alpha=0.3 \mathrm{~km}^{-1}$ for clear atmosphere, $\alpha=0.5 \mathrm{~km}^{-1}$ for little haze, and $\alpha \gg 0.5 \mathrm{~km}^{-1}$ if foggy. [in the case of no absorption $\alpha(\lambda) \cong s(\lambda)$]

Atmospheric attenuation

Clearly, at any fixed α, atmospheric transmission is exponentially decreasing with L (reducing received power P_{r})

Atmospheric attenuation (examples)

In order to have the highest T_{atm}, we must avoid some peaks of atmospheric absorption (with $\alpha(\lambda)$ highest and $T_{\text {atm }}$ lowest): e.g. $0.70,076,0.80,0.855,0.93,1.13$ $\mu \mathrm{m}: \rightarrow$ lasers used are $\mathrm{He}-\mathrm{Ne}(0.633 \mu \mathrm{~m})$ or Nd:YAG (1.064 $\mu \mathrm{m}$) or LD-GaAlAs (0.82-0.88 $\mu \mathrm{m}$)

With very clear atmosphere, we can reach up to 20 km (and come back!) with an optical transmission $\sim \mathbf{1 0} \% \bigcirc$

With some haze, at a 10 km distance, transmission is $\mathbf{\sim 1} \% \bigcirc$
With fog, just at 1 km distance, transmission is below $1 \% \bigcirc$ (with $\alpha=3.5 \mathrm{~km}^{-1}$ we get $T_{\mathrm{atm}}=\exp (-7) \cong 10^{-3}$ at 1 km)

Atmospheric attenuation (calculations)

$$
\begin{aligned}
& T_{\text {atm }}=\exp \left(-2 \alpha L_{20 \mathrm{~km}}\right)=10^{-1}, \\
& \left.\log _{10}\left[\exp \left(-2 \alpha L_{20 \mathrm{~km}}\right)\right]=\log _{10}\left[10^{-1}\right]{ }^{2}\right] \\
& -2 \alpha L_{20 \mathrm{~km}} \log _{10} e=-1 \\
& \alpha=\frac{1}{2 L_{20 \mathrm{~km}}} \frac{1}{\log _{10} e}=\frac{1}{40 \mathrm{~km}} \frac{\ln 10}{\ln e} \\
& \alpha=\frac{2.3}{40} \mathrm{~km}^{-1}=0.0525 \mathrm{~km}^{-1} \\
& T_{\text {atm }}=\exp \left(-2 \alpha L_{10 \mathrm{~km}}\right)=10^{-2} \\
& \log _{10}\left[\exp \left(-2 \alpha L_{10 \mathrm{~km}}\right)\right]=\log _{10}\left[10^{-2}\right] \\
& -2 \alpha L_{10 \mathrm{~km}} \log _{10} e=-2 \\
& \alpha=\frac{1}{L_{10 \mathrm{~km}}} \frac{1}{\log _{10} e}=\frac{1}{10 \mathrm{~km}} \frac{\ln 10}{\ln e}=\frac{2.3}{10} \mathrm{~km}^{-1}=0.23 \mathrm{~km}^{-1}
\end{aligned}
$$

Atmospheric attenuation (examples)

§ Solar light spectrum reaching the Earth surface shows transparency windows and absorption peaks of the atmosphere
$A M=(\sin \theta)^{-1}$ "Air Mass" where θ is the arrival angle respect to the Earth surface ("to the horizon") $\theta=$ Sun elevation

Note how for small elevation angles the solar light e.m. spectrum depletes of blu light (scattering $\propto \lambda^{-4}$) and enriches, relatively, of red light (less scatter)

System equations and telemeter SNR

The photoreceiver (photodetector+transimpedance amp.) detecting receiver optical power P_{r} has electronic noise to be added to optical and shot noise to obtain the total noise power $\boldsymbol{P}_{\mathrm{n}}$ (as incident optical power on the photodiode)

The received signal optical power is $\boldsymbol{P}_{\mathbf{r}}$ (depending on P_{s})
In order to work with a given ratio $(S / N)=P_{r} / P_{\mathrm{n}}$ at the telemeter receiver, we must have:

$$
\begin{aligned}
& G P_{\mathrm{s}}^{\prime}=\frac{4 L_{\mathrm{eq}}^{2}}{D_{\mathrm{r}}^{2}} P_{\mathrm{r}}=\frac{4 L_{\mathrm{eq}}^{2}}{D_{\mathrm{r}}^{2}}\left(\frac{S}{N}\right) P_{\mathrm{n}} \begin{array}{c}
\begin{array}{c}
\text { remind } \\
\text { that we } \\
\text { have }
\end{array} \\
\begin{array}{l}
\text { telemeter } \\
\text { equivalent power }
\end{array}
\end{array} \Rightarrow\left(\frac{S}{N}\right)=\frac{G P_{\mathrm{s}}}{P_{\mathrm{s}}} \frac{D_{\mathrm{r}}^{2}}{4 L_{\mathrm{eq}}^{2}} \propto\left\{\frac{D}{L L_{\mathrm{eq}}^{2}}\right\}_{45 / 58}^{2}
\end{aligned}
$$

Power vs distance (equivalent)

$G P_{\mathrm{s}} \propto L^{2} \rightarrow$ equivalent power must be increased by two orders of magnitude for an

Noise at the receiver (of the telemeter)

\boldsymbol{P} optical power; I DC current; \boldsymbol{i} AC current

3 "optical" noise contributions to noise power P_{n} :

- noise $P_{n, r}$ associated to received signal (P_{r})
- noise $P_{\mathrm{n}, \mathrm{bg}}$ associated to background light (P_{bg} on the detector)
- noise $P_{\mathrm{n}, \mathrm{e}}$ of photodetector and transimp. amp. (front-end)

$$
P_{\mathrm{n}}=P_{\mathrm{n}, \mathrm{~s}}+P_{\mathrm{n}, \mathrm{bg}}+P_{\mathrm{n}, \mathrm{el}}
$$

$I_{\mathrm{r}}=\rho P_{\mathrm{r}}$ is the "useful" signal, $I_{\mathrm{bg}}=\rho P_{\mathrm{bg}}$ is the background and naturally $I_{\mathrm{rec}}=I_{\mathrm{r}}+I_{\mathrm{bg}}$ (resp. $\rho=\eta e / h v$)

Let's evaluate the current noise $i_{\text {rec }}$ on photodiode output $I_{\text {rec }}$:

- shot noise on $I_{\mathrm{r}} \rightarrow i_{\mathrm{r}}^{2}=2 e I_{\mathrm{r}} B \rightarrow i_{\mathrm{n}, \mathrm{s}}$
- shot noise on $I_{\mathrm{bg}} \rightarrow i_{\mathrm{bg}}{ }^{2}=2 e I_{\mathrm{bg}} B \rightarrow i_{\mathrm{n}, \mathrm{bg}}$ this noise is practically observed AFTER the
photodiode but it is virtually "transferred"
- electronic noise $\rightarrow i_{\mathrm{el}}{ }^{2}=2 e^{\prime \prime} I_{\mathrm{el}, 0}$ " $B \rightarrow i_{\mathrm{n}, \mathrm{el}}$ to its "input"

Noise at the receiver (of the telemeter)

Starting from the 3 noise contributions:

- shot noise on $I_{\mathrm{r}} \rightarrow i_{\mathrm{r}}^{2}=2 e I_{\mathrm{r}} B \rightarrow i_{\mathrm{n}, \mathrm{s}}$
- shot noise on $I_{\mathrm{bg}} \rightarrow i_{\mathrm{bg}}{ }^{2}=2 e I_{\mathrm{bg}} B \rightarrow i_{\mathrm{n}, \mathrm{bg}}$
- electronic noise $\rightarrow i_{\mathrm{el}}{ }^{2}=2 e I_{\mathrm{el}, 0} B \rightarrow i_{\mathrm{n}, \mathrm{e}}$
"equivalent" DC current producing a shot noise equal to the electronic noise transferred to the photodiode input
the global variance/ power of current noise (sum of variances for uncorrelated quantities) is:

$$
i_{\mathrm{rec}}^{2}=i_{\mathrm{n}, \mathrm{~s}}^{2}+i_{\mathrm{n}, \mathrm{bg}}^{2}+i_{\mathrm{n}, \mathrm{el}}^{2}=2 e B\left(I_{\mathrm{r}}+I_{\mathrm{bg}}+I_{\mathrm{el}, 0}\right)
$$

Dividing the two DC photocurrents and the noise equivalent current by the squared spectral responsivity (ρ^{2}) we get the optical power noise at the receiver:

$$
P_{\mathrm{n}}^{2}=(2 h v / \eta) B\left(P_{\mathrm{r}}+P_{\mathrm{bg}}+P_{\mathrm{el}, 0}\right)
$$

Let's see some typical behaviors of electronic noise $i_{n, e l}\left(\mathrm{~A} / \mathrm{Hz}^{1 / 2}\right)$ for photoreceivers (photodiode+amp.), at different operating frequencies...

Electronic noise for different photoreceivers

PD area $A<0.5 \mathrm{~mm}^{2}$
Capacity $C<0.5 \mathrm{pF}$

Evaluation of the background light (optical background power P_{bg})
We start from the solar light spectrum (slide 44) and from working conditions (AM, clouds, etc.) we get the scene spectral radiance $E_{\text {scena }}\left(\mathrm{W} / \mathrm{m}^{2} \mu \mathrm{~m}\right)$ that multiplied ("integrated") for the bandwidth $\Delta \lambda$ of the interference filter, gives the optical intensity of background light ("scene"):

$$
I_{\mathrm{sc}}=E_{\mathrm{sc}} \cdot \Delta \lambda \quad\left(\mathrm{~W} / \mathrm{m}^{2}\right) \quad \text { scene "background" intensity }
$$

Optical power collected on the receiver is $1 / \pi$ times the background intensity (I_{sc}) times the scene diffusivity (δ_{sc}) times the viewing solid angle (Ω_{sc}) [received intensity I_{bg}] then multiplied by the receiver area $\left(A=\pi d_{\mathrm{r}}^{2} / 4\right)$:

$$
\Omega_{\mathrm{sc}}=\pi N A^{2}=\begin{array}{ll}
I_{\mathrm{bg}}=(1 / \pi)\left[\delta_{\mathrm{sc}} I_{\mathrm{sc}}\right] \cdot \Omega_{\mathrm{sc}} \quad\left(\mathrm{~W} / \mathrm{m}^{2}\right) \\
P_{\mathrm{bg}}=\left[\delta_{\mathrm{s}} E_{\mathrm{sc}}^{\prime},\left\langle\lambda, N A^{2}\right] \cdot\left(\pi d_{\mathrm{r}}^{2} / 4\right)\right. & (\mathrm{W})
\end{array}
$$

being $\Omega=\pi \theta^{2} \cong \pi(N A)^{2}$ with $\bar{N} A=\sin \left(D_{\mathrm{r}} / 2 f\right)$ Numerical Aperture (in this slide " I " stays for optical intensity and not electric current) 50/58

Accuracy of the pulsed telemeter

$$
\begin{aligned}
& L=c \frac{T}{2} \quad \Rightarrow \quad \sigma_{L}=\frac{c}{2} \sigma_{T} \\
& T=T_{\text {stop }}-T_{\text {start }} \\
& \sigma_{T}^{2}=\sigma_{\text {stop }}^{2}+\sigma_{\text {start }}^{2} \cong \sigma_{\text {stop }}^{2} \\
& \sigma_{T}^{2}=\frac{\sigma_{S}^{2} \approx P_{\mathrm{n}}^{2} \approx P_{\mathrm{r}} \approx N_{\mathrm{r}}}{\mathrm{~d} S /\left.\mathrm{d} T\right|^{2} \approx P_{\mathrm{r}}^{2} / \tau^{2} \approx N_{\mathrm{r}}^{2} / \tau^{2}} \\
& \text { for SNL } P_{\mathrm{n}}{ }^{2}=(2 h v / \eta) B\left(P_{\mathrm{r}}+\not P_{\mathrm{kg}}+P \text { Pe, }\right) \\
& \begin{array}{l}
\text { output from the } \\
\text { trigger circuit }
\end{array}
\end{aligned}
$$

In a well-designed receiver (shot-noise limited, SNL):

τ

$\sigma_{T} \propto \overline{ } \quad$ number of received photons (over a single pulse $\sqrt{N_{r}}-\begin{aligned} & \text { number of received photons (over a single } \\ & \text { or as the sum/"average" }\end{aligned}$ In general, if not SNL, the background light and electronic noise contributions do increase the whole noise worsening the situation!

Accuracy of the CW sine-modulated telemeter

$$
\sigma_{\mathrm{T}} \propto \frac{1}{2 \pi f_{\mathrm{m}}} \frac{1}{\sqrt{N_{\mathrm{r}}}} \quad \text { and once again } \quad \sigma_{L}=\frac{c}{2} \sigma_{T}
$$

In analogy to the pulsed telemeter, now the term $1 / 2 \pi f_{\mathrm{m}}$ is equivalent to the duration τ of thepulse:

- pulsed telemeter: better working with short pulses (small τ)
- CW sine-modulated telemeter: better working with an high modulation frequency (high f_{m})
Usually for QS $\tau \approx 10 \mathrm{~ns} \ll\left(1 / 2 \pi f_{\mathrm{m}}\right) \approx 1 \mu$ s for a typical $f_{\mathrm{m}} \approx 200 \mathrm{kHz}$ and hence $\sigma_{\mathrm{T}, \mathrm{p}} \ll \sigma_{\mathrm{T}, \mathrm{CW} \text {-mod. }}$. (in the SNL case) but due to electronic noise $B_{\mathrm{p}} \approx 1 / \tau \approx 100 \mathrm{MHz} \gg B_{\text {CW-mod }} \approx 1 / 2 T_{\text {mis }} \approx 100 \mathrm{~Hz}-1 \mathrm{~Hz}$ (SNL difficult when pulsed)
We would like to have an high f_{m} (or high pulse repetition rate, allowing for "pulse averaging" in the pulsed case) but this will onset other measurement ambiguity problems

Ambiguity in Time Of Flight telemeters

Working with a periodic signal (transmitted and hence also received), we have an ambiguity problem in distinguishing targets at different distance that may return an optical signal with the same measurement information (time of flight or phase delay in the round-trip):
In order to avoid measurement ambiguity, we must have:

- pulsed telemeter:
$T_{\text {max }}=T\left(L_{\text {max }}\right) \leq T_{\text {rep }} \quad \Rightarrow T_{\text {rep }} \geq T_{\text {max }}$
- CW sin-mod telemeter:
$\varphi_{\max }=\varphi\left(L_{\max }\right)=2 \pi f_{\mathrm{m}} T_{\max } \leq 2 \pi \Rightarrow f_{\mathrm{m}} \leq 1 / T_{\max }: f_{\text {telem }}={ }_{\substack{c \\ f_{\text {cep }} \\ f_{\mathrm{m}}}}^{f_{\text {telem }}}$
where $T_{\text {max }}$ is the "maximum Time Of Flight" corresponding to the maximum distance $L_{\text {max }}$ said $L_{N^{\prime}}$, correctly measurable

Ambiguity in Time Of Flight telemeters

Ambiguity in Time Of Flight telemeters

- pulsed telemeter:

Q-switched laser $\tau \approx 10 \mathrm{~ns} f_{\text {rep }}=10 \mathrm{~Hz} \div 10 \mathrm{kHz}$ (repetition rate)
from $T_{\text {rep }}=T_{\text {max }}$ we get $L_{\mathrm{NA}}=(c / 2) T_{\text {rep }}=c / 2 f_{\text {rep }}=15000 \mathrm{~km}-15 \mathrm{~km}$ the problem arises only at large distances and/or for high repetition frequency of the pulse [it is useful repeating measurements of single pulses in order to increase the accuracy ("averaging")]

- CW sine-modulated telemeter:
diode laser with $f_{\mathrm{m}}=10 \mathrm{MHz}-10 \mathrm{kHz}$ (current modulated)
from $f_{\mathrm{m}}=1 / T_{\max }=1 /\left(2 L_{\mathrm{NA}} / c\right)$ we get
$L_{N A}=(c / 2) T_{\mathrm{m}}=(c / 2) \cdot\left(1 / f_{\mathrm{m}}\right)=15 \mathrm{~m} \div 15 \mathrm{~km}$
the problem arises already at medium-short distances
To achieve high accuracy we want high f_{m} ("averaging") but to reach high distances we must keep f_{m} low... combined use of 2 frequencies $f_{\mathrm{m} 1} \mathrm{e} f_{\mathrm{m} 2} 55 / 58$

LIDAR

Light Identification Detection And Ranging
very similar to a telemeter, it is an instrument for measuring "at distance" the properties of a media trough which the optical pulse undergoes transmission and backscattering

LIDAR

Laser source with high peak power (Q-switched) at one or more suitable wavelengths to detect absorption and scattering from the investigated component within the medium (gas or particulate in the atmosphere, or pollutants or plankton/chlorophyll/seaweed in water, etc.).

LIDAR

From measured Time Of Flight $t=2 L / c$ we get the distance of the investigated target ($\tau \rightarrow$ size of investigated volume); from measured backscattered signal we get the composition (chemical/physical) of the investigated volume; we obtain maps, even fake-colored, as a function of the telemeter elevation angle and distance

