"Optical Measurements" Master Degree in Engineering Automation-, Electronics-, Physics-, Telecommunication- Engineering

Optical Telemeters

Prof. Cesare Svelto Politecnico di Milano

Some pictures are taken from the Book "Electro-Optical Instrumentation: Sensing and Measuring with Lasers" by Prof. Silvano Donati

Summary

- Measurement principles and applications
- Triangulation
 - passive
 - active
- Time Of Flight (TOF)
 - pulsed
 - Continuous Wave (CW) [with sine modulation]
 - *power budget* of a laser telemeter and system equations
 - *timing* and optimal filtering, noise and accuracy, ambiguity
 - optics (launch/receiving), instrumental development
- **LIDAR** (*LIght Detection And Ranging*)

Measurement principles in Telemetry (1/2)

- *tele-metry* = distance-measurement (or also measurement at distance) we measure the distance <u>L</u> between the <u>instrument</u> and a remote <u>target</u> (*range-finding* and *range-finder*)
- 1) by triangulation (trigonometric method)

the target is "triangulated" from **two points apart** *D* **on the same baseline** (see measurement of the distance of the stars); measuring the angle between the two lines of sight one gets the distance as $L \cong D/\underline{\alpha}$ (*L*=*D*/tg α)

2) by <u>Time Of Flight</u> (measurement by counting a time interval) pulsed laser or CW sine modulated (f_m) laser
<u>T</u> = 2L/c ⇒ L = c/2 · T ∝ T ("2L" for a round-trip path)
<u>Δφ</u> = 2πf_m · T ⇒ Δφ/2π=f_m/(c/2L) ⇒
L = c/2 · Δφ/2πf_m = λ_m/2 · Δφ/2π ∝ Δφ " counting in terms of λ_m/2 " (measurement depends on res./acc. on T and Δφ, for CW also on f_m e λ_m)

Measuement principles in Telemetry (2/2)

- *tele-metry* = distance-measurement (or also measurement at distance) we measure the distance <u>L</u> between the <u>instrument</u> and a remote <u>target</u>
- **3)** by <u>interferometry</u> (by means of counting optical wavelengths) a laser beam (<u>monochromatic</u>) is sent to the target and the returning light is **coherently detected**, by beat note analysis on a photodetector; the detected signal goes as <u>**cos(2***kL*)</u>, with $k=2\pi/\lambda$, and from the phase of the cosine function we can "**count**" the distance increment in terms of $\lambda/2$ and its fractions, from 0 to *L* or for small variations ΔL starting from a fixed *L**

$$\underline{\Delta \varphi} = 2kL \Rightarrow \Delta \varphi = 2 \cdot (2\pi/\lambda) \cdot L \Rightarrow L = \lambda/2 \cdot \Delta \varphi/2\pi \propto \Delta \varphi$$

" counting L in terms of $\lambda/2$ "

 $\underline{\cos\left[2\pi \cdot L/(\lambda/2)\right]} \qquad (resolution \underline{depends \ on \ laser's \ \lambda})$

with λ typically $\approx 0.5 \,\mu\text{m}$ (VIS) we count *L* in terms of $\Delta L = \lambda/2 = 250 \,\text{nm}$ (resolving "just" $\Delta \varphi = 2\pi$) but with $\Delta \varphi = \pi \,\text{o} \,\pi/2$ we obtain $\Delta L = 125 \,\text{nm}$ or $\sim 60 \,\text{nm}$ and less... Measurement fields for Optical Telemeters
 Distance and displacement measurements

Measurement method by triangulation

• Measurement becomes **less accurate over long distance** (in practice for *L*>>*D*). In fact, if the detection angle gets small (α <10 mrad \approx 0.5°) rel. uncertainty $\Delta \alpha / \alpha$ increases

"Optical lever" on the mirror

1. $\gamma + \beta = 90^{\circ}$ 2. $\alpha + 2\beta = 90^{\circ}$ 3. $\gamma - \delta = 45^{\circ}$ from 1.–3. we get $\beta + \delta = 45^{\circ}$ from 2./2 we get $\alpha/2 + \beta = 45^{\circ}$ subtracting the two members, do obtain $\delta = \alpha/2$ Resolution and accuracy in a passive optical triangulator (examples)

- Accuracy/resolution of distance (*L*) measurement depend on accuracy/resolution of the angle (α) measurement
- For example, with a micrometrical screw goniometer we can resolve $\Delta \alpha \approx 3 \mod (0.17 \,^{\circ})$ while with an angular encoder we can achieve $\Delta \alpha \approx 0.1 \mod (0.0057 \,^{\circ})$

Ex.: for *L*=1 m we choose *D*=10 cm $\Rightarrow \alpha \cong D/L=0.1$ rad

 $\Delta L = 3\%$ screw (3 cm)

L = 0.1% encoder (1 mm)

if for L=100 m we choose D=1 m $\Rightarrow \alpha = D/L=0.01$ rad M = 30% screw (30 m) it would be inserve to

 $\frac{\Delta L}{L} = \frac{30\%}{1\%} \quad \text{screw} \quad (30 \text{ m}) \quad \text{it would be insane to} \\ \frac{\Delta L}{1\%} = \frac{30\%}{1\%} \quad \text{encoder} \quad (1 \text{ m}) \quad \text{it would be an and the scale of the scale o$

• Performance is good until *D/L* is not too small and hence for medium-short ranges (*L*=0.1-10 m)

"Active" (laser) optical triangulator

- We **remove moving parts** (no goniom. With respect to passive triangulator) and we achieve a very quick and accurate response, very repeatable
- We use **visible** *λ* for simplicity of "target viewing" (He-Ne at 633 nm or LD-VIS or Nd:YAG2×)
- The laser beam undergoes a round trip path from telemeter to target. Misura 1D measurement with optical position sensor (2Q/PSD/CCD) of the angle *α* between going and returning beam. Receiving optics is off-axis at a distance *D* from launching optics: we then retrieve L=D/tanα

Image from a thin lens under "geometrical optics" [basics]

For an object at distance p=f (focal length) from the lens, image is formed to the "infinity" i.e. at a distance $q=\infty$

Dimensioning of the laser spot size in the active triangulator [calculus steps]

Measurement equations for the active optical triangulator (1/2)

Let *x* be the **distance** of the received spot on the CCD **from the receiving lens optical axis** (which is off-set at a fixed distance, *D*, from the launching optical axis)

For a variation $L \pm \Delta L$ we get a corresponding var. $\alpha \mp \Delta \alpha$ and $x \mp \Delta x$ (the **lens converts** α **into** x **and** $\Delta \alpha$ **into** Δx) Measurement equations for the active optical triangulator (2/2)

L measured from the position *x* on the CCD is

hence, by differentiating in *L* and in *x*, we get

$$\Delta L = -\frac{D}{x^2} f_{\rm rec} \Delta x$$

e infine

$$\frac{\Delta L}{L} = -\frac{\Delta x}{x} = -\frac{\Delta \alpha}{\alpha}$$

x is now electronically measured by a CCD and we don't use a goniometer to measure α As for the passive triangulator formula but with *x* e Δx instead of α and $\Delta \alpha$

$$\Delta L = -\frac{L^2}{f_{\rm rec}D} \cdot \Delta x \propto L^2 \qquad \frac{\Delta L}{L} \propto L$$

once again as for the passive optical triangulator

15/58

Exercise on the laser triangulator
("known" formulas: only calculations)
DATA: as in the case of passive optical triangulator, we work
with D=10 cm (and
$$f_{rec}=25$$
 cm) for L=1 m
and we now consider $w_L=5 \mu m$ and $w_{CCD}=10 \mu m$:
 $x = -\frac{D}{L} f_{rec} = \frac{10 \text{ cm}}{1 \text{ m}} 250 \text{ mm} = 25 \text{ mm}$
If we resolve $\Delta x = 10 \mu m$ ($\approx w_{CCD}$) on the photodetector,
 $\frac{\Delta L}{L} = \left| \frac{\Delta x}{x} \right| = \frac{10 \cdot 10^{-3}}{25} = 4 \cdot 10^{-4}$ ($\Delta L=400 \mu m$)
(for $L = 1 \text{ m}$)
 $\left| \Delta \alpha \right| = 4 \cdot 10^{-4} \alpha \approx 4 \cdot 10^{-4} \frac{D}{L} = 40 \mu rad$
Remind how for the passive triangulator we had $\Delta \alpha \approx 3 \text{ mrad}$
(micro-screw goniometer) and $\Delta \alpha \approx 0.1 \text{ mrad}$ (angular encoder)/58

Exercise on the active triangulator (with data, calculations and steps to get w_{rec})

Interpolation in the laser triangulator

Spatial resolution Δx on the CCD limits angular resolution $\Delta \alpha$ and hence resolution ΔL in the measurement of distance *L*

Exploiting the spatial extension of the laser spot on the CCD, we can **interpolate over more bright pixels** and <u>resolve even a sub-pixel laser spot position</u> (e.g. $\Delta x=0.2w_{CCD}$ or even less) with the resulting improvement in angular and distance resolution

EXERCISE (for home...):

Using a laser triangulator with Gaussian laser spot large $w_{\rm rec}$ =50 µm on a 1024 pixel CCD (with 12 bit amplitude resolution and $w_{\rm CCD}$ =10 µm), we want to retrieve the position of the "spot center" obtained by interpolating over bright pixels

QUESTIONS:

- if the telemeter laser is an He-Ne laser at 633 nm, what <u>kind</u> of <u>CCD</u> we should use? why?

- how many and which <u>**pixels</u>** on the CCD are "well <u>**lit**</u>" when the "background light" covers 1/100 (in amplitude) of the measurement dynamic range?</u>

- how shall me measure the **position** of the **spot center** on the CCD? How much wide is the "visible" spot?

- which are the practical limits to the <u>accuracy</u>?

- Imagine we can achieve a resolution of 0.1 pixel: calculate the absolute <u>**resolution**</u> of the telemeter at the minimum measurable distance L_{min} =10 m

ANSWERS:

- for a red He-Ne laser we can conveniently use a **Si CCD**, sensible in the visible range and inexpensive

- To calculate how many and which **pixels** on the CCD are "**well lit**", we must before define what we mean for "well lit": since the single pixel can resolve $N=2^n=2^{12}=4096$ levels of photocurrent and hence incident optical power, we can say that a pixel is well lit (*SNR*=1) if the current signal is equal to the minimum detectable current (due to quantization or electronic noise of the receiver + "background light")

[in general one pixel is lit if its signal level brings its output voltage to a greater than zero (just quantization limit) or here the pixel is well lit when its "signal" level is > 1/100 of the peak/dynamic-range of the whole optical signal (limits due to "noise" and background light)]

The optical power on the single pixel is the optical intensity times the pixel area (precisely one should integrate the intensity over the pixel surface)

Optical intensity is decreasing as $\exp(-2r^2/w_{rec}^2)$ getting farer from the peak (in r=0). So we obtain an **1/M part of the peak value** when $2r^2=w_{rec}^2\ln(M)$ or equivalently $r/w_{rec}=(0.5\ln M)^{0.5}=[0.5\cdot2.3\cdot\log_{10}M]^{0.5}$

We hence can calculate

$r \approx k \cdot w_{\text{rec}}$ with $k = [0.5 \cdot 2.3 \cdot \log_{10} M]^{0.5}$

clearly $w_{\rm rec}$ corresponds to a certain number of pixels and so *r* can be given by "counting pixels"

with <u>noise and background</u> (at 1/M=1/100 from peak): we get 1/100 of the peak value for $2r^2=w^2_{rec}\ln(100)$ $r/w_{rec}=(0.5\cdot\ln100)^{0.5}=[1.15\cdot\log_{10}100]^{0.5}=[2.3]^{0.5}\approx1.5$ and $r\cong75\mu$ m with a well-lit spot of about **150 µm** diameter or 15 pixel just <u>quantization</u>: for 1/M=1/10 of peak, $r \cong 1.1 \cdot w_{rec}$ [as we know exp(-2)=13 % $\approx1/10$]

we get $1/4096 \approx 1/4000$ of the peak value for $2r^2 = w_{rec}^2 \ln(4000) (\approx 4000 \text{ amplitude levels for } n=12 \text{ bit})$ $r/w_{rec} = (0.5 \cdot \ln 4000)^{0.5} = [1.15 \cdot \log_{10} 4000]^{0.5} = [1.15 \times 3.6]^{0.5} \approx 2$ we hence obtain $r \approx 2w_{rec} = 2 \cdot 50 \mu \text{m} \approx 100 \mu \text{m}$ corresponding to 10 pixels each of size10 μm (starting from the Gaussan center). The total number of well-lit pixels is finally 20 pixel (±10), for a "visible" spot size (diameter) of approximately **200** μm Exercise on the laser triangulator using as pixel weight the corresponding voltage - The spot **position** on the CCD can be obtained by a <u>weighted average</u> of the points of the Gaussian profile, maybe after subtracting background level, and preferably by the average of only well-lit points; or by <u>least squares fitting</u> with function (Gaussian + offset): we can imagine achieving Δx =0.1pixel=1µm

- Limits to the **accuracy** are set by noise at the photodetector (ext. light, shot noise, CCD dark current, additional noise quantization/electronic) leading to a wrong <u>estimate of the center position</u> of ideal Gaussian

- The CCD is wide x_{max} =1024·10µm≈1cm and, considering that $\Delta x / x_{max} = \Delta \alpha / \alpha_{max} = -\Delta L / L_{min}$, the **resolution** of the measure is $\Delta L = L_{min} (\Delta x / x_{max}) =$ =10m·(1µm/1cm)=1mm [at 10 m distance it is 10⁻⁴] _{23/58}

Example: to get $\Delta L = 1$ m we need $\Delta T = 2.1 \text{m}/3.10^8 \text{ m/s} \cong 7 \text{ ns} \approx \tau$ (limit for a Q-switched laser; for shorter τ values we need a mode-locked laser; power...) for $\Delta L = 1 \text{ mm} \rightarrow \Delta T \cong 7 \text{ ps}...$ difficult resolving sub-mm with conventional TOF 24/58

Time Of Flight telemeters (length and time resolution)

in impulsata
$$\mathcal{T} \stackrel{\mathcal{Z}}{\xrightarrow{}} \Delta \mathcal{T}$$

essendo
$$\Delta T = \frac{2\Delta L}{C}$$

Length resolution ΔL in the measurement depends on the **time resolution** ΔT and so on pulse duration

To resolve a time ("distance") interval ΔT we must work with **pulse duration** $\langle \approx \Delta T$ and so with "fast" photodetector electronics with **bandwidth** $B \approx (1/\tau)$ 25/58

Time Of Flight telemeters (time interval measurement)

The measurement of a time interval *T* is achieved with an **electronic counter**, "counting" the **distance between** t_{start} (transmitted pulse) and t_{stop} (pulse received), on the corresponding photodetected electronic signals. Position of pulses on the time axis is determined by a **threshold discriminator** (*trigger*) on the voltage waveform/pulses

Not always an analogue *t* falls exactly on a clock transition. So the measurement of *t* has the discrete resolution T_c of the electronic counter, with uncertainty $u_q(t) = \sigma(t) = T_c / \sqrt{12}$

26/58

Time Of Flight telemeters (measurement uncertainty of $T=t_{stop}-t_{start}$)

Having uncertainty $u(t)=u_q(t)$ both on t_{start} and t_{stop} then the combined accuracy on the measured time of fligh *T* is $u(T) = [u^2(t_{stop})+u^2(t_{start})]^{1/2} = \sqrt{2} u_q(t) = T_C/\sqrt{6}$

If we start the clock, with period $T_{\rm C}$, exactly at $t_{\rm start}$ we then have $u(t_{\rm start})=0$ [clock pulses starting with $t=t_{\rm start}$] and for the whole TOF we obtain $u(T) = u(t_{\rm stop}) = T_{\rm C}/\sqrt{12}$

In general, by choosing the clock period T_c short enough, the measurement uncertainty will depend by other factors (much more significant than the "small quantization"): in particular from the **amplitude noise** at the trigger. This noise depends on the circuit electronic noise and on the **amplitude noise of the detected signal**

CW telemeters (principle)

Optical power sine modulated at frequency f_{mod}

 $P(t) = P_0 \left[1 + m \cdot \sin(2\pi f_{mod} t) \right] \quad P_0 \text{ is the average power}$

 $T_{\text{mod}} = 1/f_{\text{mod}}$ P, $\leftrightarrow \Delta T$ 2L/c We detect the phase delay $\Delta \varphi$ between detected signal (P_r) and transmitted signal (\dot{P}_{t})

 $L = c/2 \cdot \Delta T = c/2 \cdot T_{\text{mod}} \cdot \Delta \varphi / 2\pi = c/2 \cdot \Delta \varphi / 2\pi f_{\text{mod}}$

CW telemeters (working equations)

Power budget in optical telemeters

Cooperative target (reflecting) (1/2)

When the target is cooperative, e.g. *corner cube* reflector, it behaves **like a mirror** and hence the receiver sees the target at a **distance 2***L* infinite plane reflecting surface

The beam spot size (diameter) at distance 2*L* is $\theta_s \cdot 2L$ and hence the fractional received power (respect to transmitted power from the source), on a circular area with diameter D_r (receiving lens) set at distance 2*L*, is equal to

 $\frac{(\pi/4)D_r^2}{(\pi/4)\theta_s^2 4L^2}$ ratio of the receiver area to received beam spot size (area) areas ratio at the receiver

32/58

receiver is lit (*D*>*D*_r)

Cooperative target (reflecting) (2/2)

If the corner cube has a diameter smaller then the laser spot size on it ($D_{cc} < \theta_s L$ i.e. "only corner cube cutting the beam") and the receiver collects all reflected beam, we have

The condition of cutting receiver is valid when $D_r < 2D_{cc}$ ONLY when $D_{cc} < D_r/2$ we have only corner cube cutting the beam 33/58

Radiance of a Lambert diffusing surface

Non-cooperative target (diffusing)

When the target is non-cooperative, the illuminated **surface**, with area $A_{\rm T}$, is **diffusing** light with a diffusing coefficient $\delta < 1$

B is the target **brightness**

Non-cooperative target (diffusing)

Naming Ω_r the solid angle (θ_r the plane angle) by which light diffused from the target sees the receiver, we have $\Omega_{\rm r} = \pi \theta_{\rm r}^2 = \frac{\pi D_{\rm r}^2}{\Lambda I^2} \quad \text{being } \theta_{\rm r} = (D_{\rm r}/2)/L \qquad \text{angle of sight} \\ \text{of the receiver} \\ \text{from the target}$ from the target

and hence the power collected at the receiver is $P_{\rm r} = \Omega_{\rm r} \cdot B \cdot A_{\rm T} = \frac{\pi D_{\rm r}^2}{4L^2} \cdot \frac{\delta P_{\rm s}}{\pi \kappa} \cdot \kappa_{\rm T} = \delta \frac{D_{\rm r}^2}{4L^2} P_{\rm s} \quad \begin{array}{c} \text{independent} \\ \text{from the lit} \\ \text{area (spot size)} \\ \text{on the target} \end{array}$

independent on the target

with a fractional received power

 $\frac{P_{\rm r}}{P_{\rm s}} = \delta \frac{D_{\rm r}^2}{4L^2}$ like for cooperative target but with δ instead of $1/\theta_{\rm s}^2$ and obviously $\delta \le 1 <<1/\theta_{\rm s}^2$

Solid angle $\Omega = \int d\Omega = \int \frac{dS}{R^2} = \int_{\Omega}^{r} \frac{2\pi\rho \cdot d\rho}{R^2} = \frac{2\pi}{R^2} \int_{\Omega}^{r} \rho \cdot d\rho = \frac{2\pi}{R^2} \frac{r^2}{2} = \pi \frac{r^2}{R^2} = \pi \theta^2$ Def. # Radian θ dSZ = Mn. MR dS ANGOLO SOLIDO is the **plane angle** superficie "elementare" S, di raggio re, centrato attorno ol subtended by a circular arc, as the length of the punto O' della diverione di arc (*r*) divided by the Vista 00' radius of the arc (*R*): ← superficie sferico, di roppio R, centroto nel punto di viste O $\theta = r/R$ (1 rad is the plane angle where the arc is equal to the radius). L'augolo piono è $\theta = \frac{\pi}{p} (r << R)$ Def. # Steradian Ω is the **solid angle** Sofera = 4TTR² e SZpiro = 4TT subtended at the center L'angolo solido è t.c. of a sphere, as the area (*S*) of the cap divided by Sh: Spino = S: Sefera the squared radius of the $\mathcal{I} = \frac{S}{Sigma} \cdot 4\Pi = \frac{\Pi \pi^2}{4\Pi R^2} 4\Pi = \Pi \frac{\pi^2}{R^2} = \pi \theta^2$ sphere (R^2): $\Omega = S/R^2$ 37/58

Power budget with diffraction and additional losses (optics and atmosphere)

Considering **power losses** due to Tx and Rx **optics** ($T_{opt} \leq 1$) and round-trip (2*L*) **propagation in the atmosphere** ($T_{atm} \leq 1$)

In the end we can write a **general expression**

38/58

Gain of the optical telemeter

The optical telemeter gain can be G>>1 in the case of **cooperative target** (since $\theta_s <<1$)

 $G = T_{opt} / \theta_s^2 \approx 10^6$ if $\theta_s = 1$ mrad and $T_{opt} \cong 1$

in this case the expression is analogous to the "gain of the antenna" in a radio transmission (where it is extremely important to have low divergence)

Instead, the optical telemeter gain is always G<1 in the case of **non-cooperative target** ($\delta_{typ.}=0.5-0.1$)

Good **optics** (**antireflection** coated at λ laser) allow reflection losses <1%, at each air-glass interface, and absorption+scattering losses in the material (glass or quartz) <10⁻³ \Rightarrow whole transmission T_{opt} >0.98-0.9 \cong 1

Attenuation coefficient

During its propagation (in air), the laser beam undergoes **absorption and diffusion losses** due to molecules or particulate always present **in the atmosphere**

$$T_{\text{atm}} = \exp(-\alpha 2L) = P(z=2L)/P(z=0)$$
 from the law of Lambert-Beer

$$\alpha = a(\lambda) + s(\lambda) = \alpha(\lambda)$$
 attenuation coefficient
absorption scattering (diffused light)

Carefully avoiding molecular absorption peaks, we can approximately adopt α =0.1km⁻¹ for a very clear atmosphere, α =0.3km⁻¹ for clear atmosphere, α =0.5km⁻¹ for little haze, and α >>0.5km⁻¹ if foggy. [in the case of no absorption $\alpha(\lambda) \cong s(\lambda)$]

Atmospheric attenuation

Clearly, at any fixed α , atmospheric transmission is exponentially decreasing with *L* (reducing received power *P*_r)

Atmospheric attenuation (examples)

In order to have the highest T_{atm} , we must avoid some peaks of atmospheric absorption (with $\alpha(\lambda)$ highest and T_{atm} lowest): *e.g.* 0.70, 076, 0.80, 0.855, 0.93, 1.13 µm: \rightarrow lasers used are He-Ne (0.633 µm) or Nd:YAG (1.064 µm) or LD-GaAlAs (0.82-0.88 µm)

With **very clear atmosphere**, we can reach up to 20 km (and come back!) with an optical transmission **~10% O**

With some **haze**, at a 10 km distance, transmission is $\sim 1\%$ \bigcirc

With **fog**, just at 1 km distance, transmission is below **1**‰ \bigcirc (with α =3.5 km⁻¹ we get T_{atm} =exp(-7) \cong 10⁻³ at 1 km)

Atmospheric attenuation (calculations)

$$T_{\text{atm}} = \exp(-2\alpha L_{20\text{km}}) = 10^{-1} \text{ means of } 10^{-1}$$

System equations and telemeter SNR

The photoreceiver (photodetector+transimpedance amp.) detecting receiver optical power P_r has electronic noise to be added to optical and shot noise to obtain the **total noise power** P_n (as incident optical power on the photodiode)

The **received signal** optical power is P_r (depending on P_s)

In order to work with a given ratio $(S/N)=P_r/P_n$ at the telemeter receiver, we must have:

$$(\widehat{GP_s}) = \frac{4L_{eq}^2}{D_r^2} P_r = \frac{4L_{eq}^2}{D_r^2} \left(\frac{S}{N}\right) P_n \qquad \begin{array}{c} \text{remind} \\ \text{that we} \\ \text{have} \end{array} \quad \frac{P_r}{P_s} = G \frac{D_r^2}{4L_{eq}^2} \\ \text{telemeter} \\ \text{equivalent power} \qquad \Longrightarrow \left(\frac{S}{N}\right) = \frac{GP_s}{P_n} \frac{D_r^2}{4L_{eq}^2} \propto \left\{\frac{D}{L}\right\}_{45/58}^2$$

Noise at the receiver (of the telemeter)
<u>*P* optical power; *I* DC current; *i* AC current</u>
3 "optical" noise contributions to noise power P_n:
noise P_n associated to received signal (P_r)

- noise $P_{n,bg}$ associated to background light (P_{bg} on the detector)
- noise $P_{n,el}$ of photodetector and transimp. amp. (*front-end*)

$$P_{\rm n} = P_{\rm n,s} + P_{\rm n,bg} + P_{\rm n,el}$$

 $I_r = \rho P_r$ is the "useful" signal, $I_{bg} = \rho P_{bg}$ is the background and naturally $I_{rec} = I_r + I_{bg}$ (resp. $\rho = \eta e / hv$)

Let's evaluate the current noise i_{rec} on photodiode output I_{rec} :

- shot noise on $I_r \rightarrow i_r^2 = 2eI_rB \rightarrow i_{n,s}$
- shot noise on $I_{bg} \rightarrow i_{bg}^2 = 2eI_{bg}B \rightarrow i_{n,bg}$
- electronic noise $\rightarrow i_{\rm el}^2 = 2e'' I_{\rm el,0}'' B \rightarrow i_{\rm n,el}$ to its "input"

virtually "transferred" to its "input"

this noise is practically

observed AFTER the

photodiode but it is

Noise at the receiver (of the telemeter)

I

Starting from the 3 noise contributions:
- shot noise on
$$I_r \rightarrow i_r^2 = 2eI_rB \rightarrow i_{n,s}$$

- shot noise on $I_{bg} \rightarrow i_{bg}^2 = 2eI_{bg}B \rightarrow i_{n,bg}$
- electronic noise $\rightarrow i_{el}^2 = 2eI_{el,0}B \rightarrow i_{n,el}$
the global variance/power of current noise (sum of variances
for uncorrelated quantities) is:
 $i_{rec}^2 = i_{n,s}^2 + i_{n,bg}^2 + i_{n,el}^2 = 2eB(I_r + I_{bg} + I_{el,0})$
Dividing the two DC photocurrents and the noise equivalent
current by the squared spectral responsivity (ρ^2)
we get the optical power noise at the receiver:
 $\rightarrow P_n^2 = (2h\nu/\eta) B(P_r + P_{bg} + P_{el,0})$
Let's see some typical behaviors of electronic noise
 $i_{n,el}$ (A/Hz^{1/2}) for photoreceivers (photodiode+amp.),
at different operating frequencies...

Electronic noise for different photoreceivers

Evaluation of the background light (optical background power P_{bg})

We start from the solar light spectrum (slide 44) and from working conditions (*AM*, clouds, *etc*.) we get the scene spectral radiance E_{scena} (W/m²µm) that multiplied ("integrated") for the bandwidth $\Delta\lambda$ of the interference filter, gives the optical intensity of background light ("**sc**ene"):

 $I_{\rm sc} = E_{\rm sc} \cdot \Delta \lambda$ (W/m²) scene "background" intensity Optical power collected on the receiver is $1/\pi$ times the background intensity ($I_{\rm sc}$) times the scene diffusivity ($\delta_{\rm sc}$) times the viewing solid angle ($\Omega_{\rm sc}$) [received intensity $I_{\rm bg}$] then multiplied by the receiver area ($A = \pi d_{\rm r}^2/4$):

$$\begin{array}{c} \Omega_{\rm sc} = \pi NA^2 \end{array} \stackrel{I_{\rm bg}}{I_{\rm bg}} = (1/\pi) \left[\begin{array}{c} \delta_{\rm sc} I_{\rm sc} \end{array} \right] \cdot \Omega_{\rm sc} \qquad (W/m^2) \\ P_{\rm bg} = \left[\begin{array}{c} \delta_{\rm s} E_{\rm sc'} \Delta \lambda NA^2 \end{array} \right] \cdot (\pi d_{\rm r}^2/4) \qquad (W) \\ \end{array} \\ \begin{array}{c} \text{being } \Omega = \pi \theta^2 \cong \pi (NA)^2 \quad \text{with } NA = \sin(D_{\rm r}/2f) \quad \text{Numerical Aperture} \\ (\underline{\text{in this slide } "I" \text{ stays for optical intensity and not electric current}) } \end{array} \right]$$

Accuracy of the pulsed telemeter

In general, if not SNL, the background light and electronic noise contributions do increase the whole noise worsening the situation! 51/58

Accuracy of the CW sine-modulated telemeter

 $\sigma_{\rm T} \propto \frac{1}{2\pi f_{\rm m}} \frac{1}{\sqrt{N_{\rm r}}}$ and once again $\sigma_L = \frac{c}{2} \sigma_T$

In analogy to the pulsed telemeter, now the term $1/2\pi f_m$ is equivalent to the duration τ of the pulse:

- **pulsed telemeter:** better working with short pulses (**small** τ) - **CW sine-modulated telemeter:** better working with an high modulation frequency (**high** f_m)

Usually for QS $\tau \approx 10$ ns $<<(1/2\pi f_m)\approx 1\mu$ s for a typical $f_m \approx 200$ kHz and hence $\sigma_{T,p} << \sigma_{T,CW-mod.}$ (in the SNL case) but due to electronic noise $B_p \approx 1/\tau \approx 100$ MHz $>> B_{CW-mod.} \approx 1/2T_{mis} \approx 100$ Hz-1Hz (SNL difficult when pulsed)

We would like to have an **high** f_m (or high pulse repetition rate, allowing for "pulse averaging" in the pulsed case) but this will onset other **measurement ambiguity problems** 52/58 Ambiguity in Time Of Flight telemeters

Working with a periodic signal (transmitted and hence also received), we have an **ambiguity problem** in distinguishing **targets at different distance** that may return an optical **signal with the same measurement information** (time of flight or phase delay in the round-trip):

In order to avoid measurement ambiguity, we must have:

- pulsed telemeter:

 $T_{\max} = T(L_{\max}) \le T_{rep} \implies T_{rep} \ge T_{\max}$ - CW sin-mod telemeter: $\varphi_{\max} = \varphi(L_{\max}) = 2\pi f_m T_{\max} \le 2\pi \implies f_m \le 1/T_{\max}$ $T_{\max} = \frac{2L_{NA}}{c} \le \frac{1}{f_{telem}}$ $f_{telem} = \left\langle f_{m} \right\rangle$

where T_{max} is the "maximum Time Of Flight" corresponding to the maximum distance $L_{max'}$ said $L_{NA'}$ correctly measurable 53/58

Ambiguity in Time Of Flight telemeters

Ambiguity in Time Of Flight telemeters

- **pulsed** telemeter:

Q-switched laser $\tau \approx 10$ ns $f_{rep}=10$ Hz÷10kHz (repetition rate) from $T_{rep}=T_{max}$ we get $L_{NA}=(c/2)T_{rep}=c/2f_{rep}=15000$ km÷15km the problem arises only at large distances and/or for high repetition frequency of the pulse [it is useful repeating measurements of single pulses in order to increase the accuracy ("averaging")]

- CW sine-**modulated** telemeter:

diode laser with $f_m = 10$ MHz+ 10kHz (current modulated) from $f_m = 1/T_{max} = 1/(2L_{NA}/c)$ we get $L_{NA} = (c/2)T_m = (c/2) \cdot (1/f_m) = 15m \div 15$ km the problem arises already at medium-short distances

To achieve high accuracy we want high f_m ("averaging") but to reach high distances we must keep f_m low... combined use of 2 frequencies $f_{m1} e f_{m2 55/58}$

LIDAR

Light Identification Detection And Ranging very similar to a telemeter, it is an instrument for measuring "at distance" the **properties of a media** trough which the **optical pulse** undergoes transmission and **backscattering**

- LIDAR

Laser source with high peak power (**Q-switched**) at one or **more suitable wavelengths** to detect **absorption** and **scattering** from the investigated component within the medium (**gas** or **particulate in the atmosphere**, or **pollutants** or plankton/chlorophyll/seaweed **in water**, *etc.*).

LIDAR

From measured Time Of Flight t=2L/c we get the distance of the investigated target ($\tau \rightarrow$ size of investigated volume); from measured backscattered signal we get the composition (chemical/physical) of the investigated volume;

we obtain maps, even fake-colored, as a function of the telemeter elevation angle and distance

