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Summary 

• Measurement principles and applications

• Triangulation
- passive
- active

• LIDAR (LIght Detection And Ranging)

• Time Of Flight (TOF) 
- pulsed
- Continuous Wave (CW) [with sine modulation]

- power budget of a laser telemeter and system equations 
- timing and optimal filtering, noise and accuracy, ambiguity 
- optics (launch/receiving), instrumental development
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Measurement principles in Telemetry (1/2)

• tele-metry = distance-measurement (or also measurement at distance)

we measure the distance L between the instrument and a remote target
( range-finding and range-finder )

1) by triangulation (trigonometric method)

the target is "triangulated" from two points apart D on the same baseline 
(see measurement of the distance of the stars); measuring the angle 
between the two lines of sight one gets the distance as L≅≅≅≅D/αααα (L=D/tgα)

2) by Time Of Flight (measurement by counting a time interval)

pulsed laser or CW sine modulated ( fm) laser

T = 2L/c⇒ L = c/2 ⋅⋅⋅⋅ T ∝∝∝∝T ( "2L" for a round-trip path)

∆∆∆∆ϕϕϕϕ = 2πfm ⋅T ⇒ ∆ϕ/2π=fm/(c/2L) ⇒

L = c/2 ⋅⋅⋅⋅ ∆∆∆∆ϕϕϕϕ /2ππππfm = λλλλm/2 ⋅⋅⋅⋅ ∆∆∆∆ϕϕϕϕ /2ππππ ∝∝∝∝∆∆∆∆ϕϕϕϕ “ counting  in terms of λλλλm /2 ”

( measurement depends on res./acc. on T and ∆ϕ , for CW also on  fm e λλλλm )
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Measuement principles in Telemetry (2/2)

3) by interferometry (by means of counting optical wavelengths)

a laser beam (monochromatic) is sent to the target and the returning light 
is coherently detected, by beat note analysis on a photodetector; the 
detected signal goes as cos(2kL), with k=2ππππ/λλλλ, and from the phase of the 
cosine function we can "count" the distance increment in terms of λλλλ/2 and 
its fractions, from 0 to L or for small variations ∆L starting from a fixed L*

∆∆∆∆ϕϕϕϕ = 2kL⇒ ∆ϕ =2⋅(2π/λ)⋅L⇒ L=λλλλ/2⋅⋅⋅⋅∆∆∆∆ϕϕϕϕ /2ππππ ∝∝∝∝∆∆∆∆ϕϕϕϕ

“ counting L in terms of λλλλ/2 ”

cos [ 2ππππ· L / (λλλλ/2) ] ( resolution depends on laser’s λλλλ )

with λ typically ≈0.5 µm (VIS)

we count L in terms of ∆L=λ/2=250 nm (resolving “just” ∆ϕ =2π)

but with ∆ϕ =π o π/2 we obtain ∆L=125 nm or ∼60 nm and less…

• tele-metry = distance-measurement (or also measurement at distance)

we measure the distance L between the instrument and a remote target
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T E L E M E T E R S

Measurement fields for 
Optical Telemeters

Distance and displacement measurements

WITH SINE MODULATION

(electrical phase shift meas. on mod. light)

topography, short range

PULSED

(meas. time of flight)

geodesy, radar, long-range

INTERFEROMETRY

(meas. optical ϕ
coherent detection)

very high-resolution 

BY INTENSITY MODULATION

(optical mod. incoherent meas.)
BY TRIANGULATION

(meas. optical P and 
beam position)

short-range

[0.1-10 m] [∆L=100-10 nm]

[0.1-10 km] [1-1000 m]
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Measurement method by triangulation

• Measurement becomes less accurate over long distance
(in practice for L>>D). In fact, if the detection angle gets 
small (α<10 mrad ≈ 0.5°) rel. uncertainty ∆α/α increases

α

TELEMETER                            TARGET
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Passive optical triangulator

sensitivity 
of L with α

error or
unc. or res.
(absolute)

error or
unc. or res.
(relative)

D/L=tanαααα

from angular meas. 
we get the distance L

note that ∆L
increases as L2

res. gets worse 
with increasing 
distance

EYE

UNCertainty

quantized meas. 
(limited res.)

α/2 L non-linearly depending 
from viewing angle αααα

∝L2

or
∝1/α2
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“Optical lever” on the mirror

δ δ δ δ ====αααα/2

αααα

αααα

ββββ
ββββ

αααα 0000====0000

γγγγ

δ δ δ δ ====αααα/2

1. γ + β = 90°
2. α + 2β = 90°
3. γ  - δ = 45°

from 1.−3. we get    β + δ = 45°
from 2./2  we get  α/2 + β = 45°

subtracting the two members,
do obtain δ δ δ δ = αααα/2/2/2/2

45°
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Resolution and accuracy in a 
passive optical triangulator (examples)

• Accuracy/resolution of distance (L) measurement depend on 
accuracy/resolution of the angle (α ) measurement

• For example, with a micrometrical screw goniometer we can 
resolve ∆α ≈ 3 mrad (0.17 °) while with an angular encoder
we can achieve ∆α ≈ 0.1 mrad (0.0057 °)

Ex.: for L=1 m we choose D=10 cm  ⇒ α ≅D/L=0.1 rad

• Performance is good until  D/L is not too small and hence 
for medium-short ranges (L=0.1-10 m)

if for L=100 m we choose D=1 m  ⇒ α =D/L=0.01 rad

it would be insane to 
keep D=10 cm because
it would be α = 1 mrad
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“Active” (laser) optical triangulator

• We remove moving parts (no goniom. With 
respect to passive triangulator) and we achieve a 
very quick and accurate response, very repeatable

• We use visible λλλλ for simplicity of “target viewing” 
(He-Ne at 633 nm or LD-VIS or Nd:YAG2××××)

• The laser beam undergoes a round trip path from 
telemeter to target. Misura 1D measurement with 
optical position sensor (2Q/PSD/CCD) of the
angle αααα between going and returning beam.
Receiving optics is off-axis at a distance D from 
launching optics: we then retrieve L=D/tanαααα
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Laser triangulator  or active triangulator

⇒

Interference filter removes 
ambient light disturbance

fill L

frec

α is measured as 
displacement in the 
"rec“ lens focal plane

x
αααα = atan(D/L)=atan(x/frec)

L = (D/x)frec∝∝∝∝ 1/x “non-lin”
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Image from a thin lens under
“geometrical optics" [basics]

qp

For an object at distance p=f
(focal length) from the lens, 
image is formed to the “infinity" 
i.e. at a distance q=∞
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Dimensioning of the laser spot size in 
the active triangulator [calculus steps]

optical axisγγγγ
γγγγ

L1 L2

h1

h2

wrec= (frec /fill)wL

h1=wL e L1=fill
h2=wT e L2=L

toward target

h1=wT L1=L
h2=wrec L2=frec

toward receiver
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Measurement equations for the 
active optical triangulator (1/2)

Let x be the distance of the received spot on the CCD from 
the receiving lens optical axis (which is off-set at a fixed 
distance, D, from the launching optical axis)

For a variation L±±±±∆L we get a corresponding var. α ∆α
and  x ∆x (the lens converts αααα into x and ∆∆∆∆αααα into ∆∆∆∆x)

⇐⇐⇐⇐
conversion 
from angle to 
displacement

⇐⇐⇐⇐
distance 
measured 
as an agle
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Measurement equations for the 
active optical triangulator (2/2)

Lmeasured from the position x on the CCD is

e infine

once again as for the 
passive optical triangulator

hence, by differentiating in L and in x, we get

As for the passive triangulator formula 
but with x e ∆x instead of α and ∆α

x is now electronically measured by a CCD 
and we don’t use a goniometer to measure α
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Exercise on the laser triangulator
(“known“ formulas: only calculations)

DATA: as in the case of passive optical triangulator, we work 
with D=10 cm (and frec=25 cm) for L=1 m
and we now consider wL=5 µm and wCCD=10 µm:

If we resolve ∆x=10 µm (≈wCCD) on the photodetector,

( ∆∆∆∆L=400 µµµµm )
( for L = 1 m )

Remind how for the passive triangulator we had ∆α ≈ 3 mrad 
(micro-screw goniometer) and ∆α ≈ 0.1mrad (angular encoder)
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DATA:
L=1 m   wL=5 µm   
fill=125 mm   frec=250 mm

Exercise on the active triangulator 
(with data, calculations and steps to get wrec)

optical axisγγγγ
γγγγ

L1 L2

h1

h2

wrec= ( frec /fill)wL=10 µµµµm ≈≈≈≈ wCCD

h1=wL e L1=fill
h2=wT e L2=L

h1=wT L1=L
h2=wrec L2=frec
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Interpolation in the laser triangulator

Exploiting the spatial extension of the laser spot on 
the CCD, we can interpolate over more bright pixels
and resolve even a sub-pixel laser spot position
(e.g. ∆x=0.2wCCD or even less) with the resulting 
improvement in angular and distance resolution

EXERCISE (for home…):

Using a laser triangulator with Gaussian laser spot 
large wrec=50 µm on a 1024 pixel CCD (with 12 bit 
amplitude resolution and wCCD=10 µm), 
we want to retrieve the position of the “spot center" 
obtained by interpolating over bright pixels

Spatial resolution ∆x on the CCD limits angular resolution ∆α
and hence resolution ∆L in the measurement of distance L
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Exercise on the laser triangulator

QUESTIONS:

- if the telemeter laser is an He-Ne laser at 633 nm, 
what kind of CCD we should use? why?

- how many and which pixels on the CCD are “well 
lit" when the “background light" covers 1/100 (in 
amplitude) of the measurement dynamic range?

- how shall me measure the position of the spot center
on the CCD? How much wide is the “visible” spot?

- which are the practical limits to the accuracy?

- Imagine we can achieve a resolution of 0.1 pixel: 
calculate the absolute resolution of the telemeter at 
the minimum measurable distance Lmin=10 m 
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Exercise on the laser triangulator

[in general one pixel is lit if its signal level brings its output voltage to a 
greater than zero (just quantization limit) or here the pixel is well lit 
when its "signal" level is > 1/100 of the peak/dynamic-range of the 
whole optical signal (limits due to “noise" and background light)]

ANSWERS:

- for a red He-Ne laser we can conveniently use a Si 
CCD, sensible in the visible range and inexpensive

- To calculate how many and which pixels on the CCD 
are “well lit", we must before define what we mean 
for “well lit": since the single pixel can resolve 
N=2n=212=4096 levels of photocurrent and hence 
incident optical power, we can say that a pixel is well 
lit (SNR=1) if the current signal is equal to the 
minimum detectable current (due to quantization or 
electronic noise of the receiver + “background light")
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Exercise on the laser triangulator

We hence can calculate

r≈≈≈≈k⋅⋅⋅⋅wrec with k=[0.5⋅⋅⋅⋅2.3⋅⋅⋅⋅log10M]0.5

clearly wrec corresponds to a certain number of pixels 
and so r can be given by “counting pixels"

The optical power on the single pixel is the optical 
intensity times the pixel area (precisely one should 
integrate the intensity over the pixel surface)

Optical intensity is decreasing as exp(-2r2/w2
rec) 

getting farer from the peak (in r=0). So we obtain an
1/M part of the peak value when 2r2=w2

recln(M)
or equivalently r/wrec=(0.5lnM)0.5=[0.5⋅2.3⋅log10M]0.5
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Exercise on the laser triangulator

we hence obtain r≈2wrec=2⋅50µm≅100µm corresponding 
to 10 pixels each of size10 µm (starting from the 
Gaussan center). The total number of well-lit pixels is 
finally 20 pixel (±10), for a "visible" spot size (diameter) 
of approximately 200 µµµµm

just quantization:
we get 1/4096 ≈ 1/4000 of the peak value for 
2r2=w2

recln(4000) (≈ 4000 amplitude levels for n=12 bit)

r/wrec=(0.5⋅ln4000)0.5=[1.15⋅log104000]0.5=[1.15×3.6]0.5≈2

with noise and background (at 1/M=1/100 from peak):
we get 1/100 of the peak value for 2r2=w2

recln(100) 
r/wrec=(0.5⋅ln100)0.5=[1.15⋅log10100]0.5=[2.3]0.5≈1.5 
and r≅75µm with a well-lit spot of about 150 µµµµm
diameter or 15 pixel for 1/M=1/10 of peak, r ≅ 1.1⋅wrec

[as we know exp(-2)=13 %≈1/10]
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Exercise on the laser triangulator

- The CCD is wide xmax=1024⋅10µm≈1cm and, 
considering that ∆x/xmax=∆α/αmax=-∆L/Lmin, the 
resolution of the measure is ∆L=Lmin(∆x/xmax)= 
=10m⋅(1µm/1cm)=1mm [at 10 m distance it is 10-4]

- The spot position on the CCD can be obtained by a 
weighted average of the points of the Gaussian profile, 
maybe after subtracting background level, and 
preferably by the average of only well-lit points; or by 
least squares fitting with function (Gaussian + offset): 
we can imagine achieving ∆x=0.1pixel=1µm

- Limits to the accuracy are set by noise at the 
photodetector (ext. light, shot noise, CCD dark current, 
additional noise quantization/electronic) leading to a 
wrong estimate of the center position of ideal Gaussian

using as pixel weight the corresponding voltage
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Time Of Flight (“TOF”) telemeters
(principles and working equations)

Example: to get ∆∆∆∆L =1 m we need ∆∆∆∆T=2⋅1m/3⋅108 m/s ≅≅≅≅7 ns ≈τ  (limit for a 
Q-switched laser; for shorter τ values we need a mode-locked laser; power...)
for ∆∆∆∆L =1 mm� ∆∆∆∆T≅≅≅≅7 ps… difficult resolving sub-mm with conventional TOF

Laser radiation undergoes a round-trip path 2L (forth and 
back) in a time T, traveling at light speed c ≈ 3 ⋅108 m/s

∆∆∆∆L is constant
depending only
on the time
resolution ∆∆∆∆T
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Time Of Flight telemeters
(length and time resolution)

Length resolution  ∆∆∆∆L in th measurement depends on the 
time resolution ∆∆∆∆T and so on pulse duration

To resolve a time ("distance") interval ∆Twe must work with 
pulse duration<≈≈≈≈∆∆∆∆T and so with “fast” photodetector 
electronics with bandwidth B≈≈≈≈(1/ττττ)
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Time Of Flight telemeters
(time interval measurement)

The measurement of a time interval  T is achieved with an 
electronic counter, "counting" the distance between tstart
(transmitted pulse) and tstop (pulse received), on the 
corresponding photodetected electronic signals.
Position of pulses on the time axis is  determined by a threshold 
discriminator (trigger) on the voltage waveform/pulses

Not always an analogue t falls exactly on a clock transition.
So the measurement of t has the discrete resolution Tc of the 
electronic counter, with uncertainty uq(t)=σσσσ (t)=Tc /

tstart tstop t

T
Tc

T = tstop – tstart ≅≅≅≅ NTC

Tc
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Time Of Flight telemeters
(measurement uncertainty of T=tstop-tstart)

Having uncertainty u(t)=uq(t) both on tstart and tstop then the 
combined accuracy on the measured time of fligh T is
u(T) = [u2(tstop)+u

2(tstart)]
1/2 =      uq(t) = TC/

In general, by choosing the clock period Tc short enough, 
the measurement uncertainty will depend by other factors 
(much more significant than the “small quantization”): 
in particular from the amplitude noise at the trigger. 
This noise depends on the circuit electronic noise and on the 
amplitude noise of the detected signal

If we start the clock, with period TC, exactly at tstart we then 
have u(tstart)=0 [ clock pulses starting with t=tstart ] 
and for the whole TOF we obtain u(T) = u(tstop) = TC/
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Time Of Flight telemeters 
(threshold discrimination and noise: σ 2)

The time of flight is measured as T = tstop - tstart and its 
variance is σσσσ 2(T)=σσσσ 2(tstart)+σσσσ 2(tstop)≅≅≅≅σσσσ 2(tstop)

The location of pulses on 
time axis  is obtained by a 
threshold discriminator 
(trigger) acting on the 
voltage signal S(t) at 
the photodetector output

Amplitude noise σS becomes 
time noise σt with the 
slope in the trigger point

tstop is more noisy

thres.

S

t

σσσσS

Detection of light pulse providing tstop is  “more noisy" (with lower SNR) since the 
light signal returning from the target is much weaker than the transmitted signal 
σσσσ 2(tstop)>>σσσσ 2(tstart)
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CW telemeters 
(principle)

Optical power sine modulated at frequency fmod

We detect the phase delay ∆ϕ
between detected signal (Pr) 
and transmitted signal (Pt)

P(t) = P0 [1+m⋅⋅⋅⋅sin(2ππππfmodt)]

∆∆∆∆T

Tmod=1/fmod

L  = c/2 ⋅⋅⋅⋅ ∆∆∆∆T =  c/2 ⋅⋅⋅⋅ Tmod ⋅⋅⋅⋅ ∆∆∆∆ϕϕϕϕ / 2ππππ =  c/2 ⋅⋅⋅⋅ ∆∆∆∆ϕϕϕϕ / 2ππππfmod

P0 is the average power
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CW telemeters 
(working equations)

Measurement sensitivity (on the phase ∆ϕ) gets higher for 
increasing modulation frequency, BUT if fmod is too high 
we can run into other problems (measurement ambiguity) 

sensitivity tells how ∆ϕ (direct measure)
varies with a variation of the distance L with  fmod=10 MHz

and δ (∆ϕ)=2 mrad (1.2°)
we get δ (∆L)≅5 mm
Increasing fmod we can
measure smaller ∆L
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Power budget in optical telemeters

Ps

Pr

Dcc full 
divergence 
angle

In practical applications  L >> fs, fr, Ds, Dr
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Cooperative target (reflecting) (1/2)

When the target is cooperative, e.g. corner cube reflector, it 
behaves like a mirror and hence the receiver sees the target 
at a distance 2L

The beam spot size (diameter) at distance 2L is θs⋅2L and 
hence the fractional received power (respect to transmitted 
power from the source), on a circular area with diameter Dr

(receiving lens) set at distance 2L, is equal to

ratio of the receiver area to 
received beam spot size (area)

DrD=θθθθs⋅⋅⋅⋅2L

L

D'=θθθθs⋅⋅⋅⋅L

infinite plane reflecting surface 

if all the 
receiver is 
lit (D>Dr)

areas ratio at the receiver
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Cooperative target (reflecting) (2/2)

If the corner cube has a diameter smaller then the laser spot size 
on it (Dcc<θsL i.e. “only corner cube cutting the beam") and the 
receiver collects all reflected beam, we have

Dr Dcc

If in addition to the corner cube also the receiver is cutting the 
beam, we have again (like for the infinite plane reflector)

Dr Dcc

The condition of cutting receiver is valid when Dr < 2Dcc

ONLY when Dcc< Dr /2 we have only corner cube cutting the beam

Dr > Dcc+θsL > Dcc+ Dcc = 2Dcc ⇒ Dcc< Dr/2

Dr Dcc Dr 2Dcc

areas ratio at the CC

it is like
receiver
Dr=2Dcc

areas ratio at the receiver
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Radiance of a Lambert diffusing surface

P

P

Radiant
Intensity

radiance or brightness
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Non-cooperative target (diffusing)

When the target is non-cooperative, the illuminated surface, 
with area AT, is diffusing light with a diffusing coefficient δδδδ <1

B is the target brightness
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Naming Ωr the solid angle (θr the plane angle) by which 
light diffused from the target sees the receiver, we have

being θr = (Dr/2)/L

with a fractional received power

like for cooperative target
but with δδδδ instead of 1/θθθθs

2

and obviously δ ≤1<<1/θs
2

angle of sight 
of the receiver 
from the target

and hence the power collected at the receiver is
independent 
from the lit 
area (spot size) 
on the target

Non-cooperative target (diffusing)
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Solid angle

Def. # Radian θθθθ
is the plane angle
subtended by a circular 
arc, as the length of the 
arc (r) divided by the 
radius of the arc (R): 
θθθθ =r/R (1 rad is the plane 
angle where the arc is 
equal to the radius).

Def. # Steradian ΩΩΩΩ
is the solid angle
subtended at the center 
of a sphere, as the area 
(S) of the cap divided by 
the squared radius of the 
sphere (R2): ΩΩΩΩ =S/R2

S
R2

( r<<R )
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Power budget with diffraction 
and additional losses (optics and atmosphere)

Considering power losses due to Tx and Rx optics (Topt≤≤≤≤1) 
and round-trip (2L) propagation in the atmosphere (Tatm≤≤≤≤1)

In the end we can write a general expression
cooperative

non-cooperative
equivalent 
length

equivalent 
GAIN
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Gain of the optical telemeter

The optical telemeter gain can be G>>1
in the case of cooperative target (since θs<<1)

if θs=1 mrad and Topt≅1

in this case the expression is analogous to the 
“gain of the antenna" in a radio transmission
( where it is extremely important to have low divergence )

Instead, the optical telemeter gain is always G<1
in the case of non-cooperative target (δtyp.=0.5-0.1)

Good optics (antireflection coated at λ laser) allow 
reflection losses <1%, at each air-glass interface, and 
absorption+scattering losses in the material (glass or 
quartz) <10-3 ⇒ whole transmission Topt>0.98-0.9≅≅≅≅1
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Attenuation coefficient

During its propagation (in air), the laser beam undergoes 
absorption and diffusion losses due to molecules or 
particulate always present in the atmosphere

Carefully avoiding molecular absorption peaks, we can 
approximately adopt α=0.1km-1 for a very clear atmosphere,
α=0.3km-1 for clear atmosphere, α=0.5km-1 for little haze, and 
α>>0.5km-1 if foggy.  [ in the case of no absorption α(λ)≅s(λ) ]

Tatm = exp ( -α α α α 2L ) =P(z=2L)/P(z=0) from the law of
Lambert-Beer

α α α α =a(λ)+s(λ)=αααα (λλλλ) attenuation coefficient

absorption scattering (diffused light)
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Atmospheric attenuation

Clearly, at any fixed α , atmospheric transmission is 
exponentially decreasing with L (reducing received power Pr)

1%

1‰
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Atmospheric attenuation (examples)

With very clear atmosphere, we can reach up to 20 km (and come 
back!) with an optical transmission ∼∼∼∼10%

With some haze, at a 10 km distance, transmission is ∼∼∼∼1%

With fog, just at 1 km distance, transmission is below 1‰

In order to have the highest Tatm, 
we must avoid some peaks of 
atmospheric absorption (with 
α(λ) highest and Tatm lowest): e.g. 
0.70, 076, 0.80, 0.855, 0.93, 1.13 
µm: → lasers used are 
He-Ne (0.633 µm) or 
Nd:YAG (1.064 µm) or 
LD-GaAlAs (0.82-0.88 µm)

(with α=3.5 km-1 we get Tatm=exp(-7)≅10-3 at 1 km)

1

3.5
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Atmospheric attenuation (calculations)
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θ

Atmospheric attenuation (examples)

Solar light spectrum 
reaching the Earth 
surface shows 
transparency windows 
and absorption peaks 
of the atmosphere

AM=(sinθθθθ )-1 "Air Mass"
where θ is the arrival 
angle respect to the Earth 
surface (“to the horizon")
θ = Sun elevation

( 
A

/W
 )

Note how for small 
elevation angles the solar 
light e.m. spectrum 
depletes of blu light 
(scattering ∝λ-4)
and enriches, relatively, 
of red light (less scatter)

VIS

sun at noon

sunrise or sunset

(sinθθθθ )-1 ≈≈≈≈BP/AP

just out of 
atmosphere
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System equations and telemeter SNR

The photoreceiver (photodetector+transimpedance amp.) 
detecting receiver optical power Pr has electronic noise to be 
added to optical and shot noise to obtain the total noise 
power Pn (as incident optical power on the photodiode)

In order to work with a given ratio (S/N)=Pr /Pn

at the telemeter receiver, we must have:

remind
that we 
have

telemeter
equivalent power

The received signal optical power is Pr (depending on Ps)

⇒⇒⇒⇒
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Power vs distance (equivalent)

CW telemeter 
Ps=0.1mW G=104 (θs=10mrad)

Tmis=10ms-1s

B = 1/2Tmis = 100Hz-1Hz

Pn ≈≈≈≈ "nW"

Pulsed telemeter
Ep≈2mJ τ ≈10ns Ps,p=0.2MW 
G≈δ ≈0.5 (non-cooperative)

B ≈ 1/τ = 100MHz

Pn ≈≈≈≈ "µµµµW"

equivalent distance L/(Tatm)0.5 (km)

equivalent power 

G Ps (W)

GPs ∝L2 � equivalent power must be increased by two orders of magnitude for an 

increase of L by one order of magnitude

eq. opt.
power

100 kW

1 W
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Noise at the receiver (of the telemeter)

3 "optical" noise contributions to noise power Pn:

- noise Pn,r associated to received signal (Pr)

- noise Pn,bg associated to background light (Pbg on the detector)

- noise Pn,el of photodetector and transimp. amp. (front-end)

Pn = Pn,s + Pn,bg + Pn,el

Ir=ρPr is the “useful“ signal, Ibg=ρPbg is the background and 
naturally Irec=Ir+Ibg (resp. ρ=ηe/hν)

Let’s evaluate the current noise irec on photodiode output Irec:

- shot noise on Ir → ir
2 = 2eIrB → in,s

- shot noise on  Ibg → ibg
2 = 2eIbgB → in,bg

- electronic noise → iel
2 = 2e"Iel,0"B → in,el

this noise is practically 
observed AFTER the 
photodiode but it is 
virtually “transferred" 
to its "input"

P optical power; I DC current; i AC current
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Noise at the receiver (of the telemeter)

the global variance/power  of current noise (sum of variances 
for uncorrelated quantities) is:

irec
2 =  in,s

2 + in,bg
2 + in,el

2 =  2eB ( Ir + Ibg + Iel,0 )

Dividing the two DC photocurrents and the noise equivalent 
current  by the squared spectral responsivity (ρ 2) 
we get the optical power noise at the receiver:

Pn
2 =  ( 2hνννν /η η η η ) B ( Pr + Pbg + Pel,0 )

Let’s see some typical behaviors of electronic noise 
in,el (A/Hz1/2) for photoreceivers (photodiode+amp.), 
at different operating frequencies...

Starting from the 3 noise contributions:
- shot noise on Ir → ir

2 = 2eIrB → in,s

- shot noise on Ibg → ibg
2 = 2eIbgB → in,bg

- electronic noise → iel
2 = 2eIel,0B → in,el

“equivalent” DC current 
producing a shot noise 
equal to the electronic noise 
transferred to the 
photodiode input

..
./

ρ
 2
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Electronic noise for different photoreceivers

PD area A<0.5mm2

Capacity C<0.5pF

see (and “see again") 
the Book examples
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Evaluation of the background light 
(optical background power Pbg)

We start from the solar light spectrum (slide 44) and from 
working conditions (AM, clouds, etc.) we get the scene spectral 
radiance Escena (W/m2µm) that multiplied ("integrated") for the 
bandwidth ∆λ of the interference filter, gives the optical  
intensity of background light (“scene”):

Isc = Esc ⋅⋅⋅⋅ ∆∆∆∆λλλλ (W/m2)   scene “background" intensity

Optical power collected on the receiver  is 1/π times the 
background intensity (Isc) times the scene diffusivity (δsc ) 
times the viewing solid angle (Ω sc) [received intensity Ibg] 
then multiplied by the receiver area (A=πdr

2/4):

Ibg = (1/ππππ)[ δδδδsc Isc ]]]] ⋅⋅⋅⋅ΩΩΩΩ sc (W/m2)

Pbg = [ δδδδs Esc ∆∆∆∆λλλλ ΝΑΝΑΝΑΝΑ2222 ] ] ] ] ⋅⋅⋅⋅ (π(π(π(πdr
2/4)    )    )    )    (W)

being Ω =πθ 2≅π(NA)2 with NA=sin(Dr/2f ) Numerical Aperture
( in this slide "I" stays for optical intensity and not electric current )

Ωsc=πNA2
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Accuracy of the pulsed telemeter

In general, if not SNL, the background light and electronic noise 
contributions do increase the whole noise worsening the situation!

In a well-designed receiver (shot-noise limited, SNL) :

number of received photons (over a single pulse 
or as the sum/“average” over N pulses)

for SNL Pn
2 =  ( 2hν ν ν ν /η η η η ) B ( Pr + Pbg + Pel,0 )
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Accuracy of the CW
sine-modulated telemeter

In analogy to the pulsed telemeter, now the term 1/2ππππfm
is equivalent to the duration ττττ of thepulse:
- pulsed telemeter: better working with short pulses (small ττττ) 
- CW sine-modulated telemeter: better working with an high
modulation frequency (high fm)

We would like to have an high fm (or high pulse repetition 
rate, allowing for "pulse averaging" in the pulsed case) but 
this will onset other measurement ambiguity problems

Usually for QS τ ≈10ns << (1/2πfm)≈1µs for a typical fm ≈200kHz
and hence σ T,p<<σ T,CW-mod. (in the SNL case) but due to electronic noise 
Bp ≈1/τ ≈100MHz >> BCW-mod.≈1/2Tmis ≈100Hz-1Hz (SNL difficult when pulsed)
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Ambiguity in Time Of Flight telemeters

Working with a periodic signal (transmitted and hence also 
received), we have an ambiguity problem in distinguishing 
targets at different distance that may return an optical signal 
with the same measurement information (time of flight or 
phase delay in the round-trip):

In order to avoid measurement ambiguity, we must have:

- pulsed telemeter:

Tmax=T(Lmax) ≤≤≤≤ Trep ⇒⇒⇒⇒ Trep ≥≥≥≥ Tmax

- CW sin-mod telemeter: 

ϕϕϕϕmax=ϕ (Lmax)=2πfmTmax ≤≤≤≤ 2π   π   π   π   ⇒⇒⇒⇒ fm≤≤≤≤1/Tmax

where Tmax is the “maximum Time Of Flight” corresponding 
to the maximum distance Lmax, said LNA, correctly measurable
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Ambiguity in Time Of Flight telemeters

When fmod is “low" or Trep is “high"
(i.e. frep low) there is no ambiguity Pb. 
but litlle averaging and poor SNR

Pb.
amb.

Pb.
amb.

OK

OK
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Ambiguity in Time Of Flight telemeters

- pulsed telemeter:

Q-switched laser τ ≈10 ns  frep=10Hz÷10kHz (repetition rate)

from Trep=Tmax we get LNA=(c/2)Trep=c/2frep=15000km÷÷÷÷15km

the problem arises only at large distances and/or for high 
repetition frequency of the pulse [it is useful repeating measurements 
of single pulses in order to increase the accuracy (“averaging")]

- CW sine-modulated telemeter:

diode laser with fm=10MHz÷10kHz (current modulated)

from fm=1/Tmax=1/(2LNA/c) we get 
LNA=(c/2)Tm=(c/2)⋅⋅⋅⋅(1/fm)=15m÷÷÷÷15km

the problem arises already at medium-short distances

To achieve high accuracy we want high fm (“averaging") but to reach high 
distances we must keep fm low... combined use of 2 frequencies fm1 e fm2
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LIDAR

Light Identification Detection And  Ranging

very similar to a telemeter, it is an instrument for measuring 
“at distance” the properties of a media trough which the 
optical pulse undergoes transmission and backscattering
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LIDAR

Laser source with high peak power (Q-switched) 
at one or more suitable wavelengths to detect absorption 
and scattering from the investigated component within the 
medium (gas or particulate in the atmosphere, or pollutants
or plankton/chlorophyll/seaweed in water, etc.).

backscattering  signal
(technique OTDR)
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LIDAR

From measured Time Of Flight t=2L/cwe get the distance
of the investigated target (τ → size of investigated volume);

from measured backscattered signal we get the composition 
(chemical/physical) of the investigated volume;

we obtain maps, even fake-colored, as a function of the 
telemeter elevation angle and distance


