"Optical Measurements"

Master Degree in Engineering Automation-, Electronics-, Physics-, Telecommunication- Engineering

Alignment/Pointing and Dimensional Measurements

Prof. Cesare Svelto
Politecnico di Milano

Summary

- Propagation and transformation (focusing, widening-and-collimation) of gaussian beams
- Position sensitive detectors of laser beam
- 4-quadrants photodiodes
- PSD (Position Sensitive Detector)
- reticle detectors
- Laser level
- Wire diameter measurement
- Optical measurement of particulate dimensions

Laser alignment

One property of laser sources is the possibility of keeping the optical bem well collimated (slightly divergent and hence with "constant spot size" during propagation)

The divergence limit posed by diffraction theory (TEM $_{00}$) is "easy to meet": e.g. for an He-Ne LASER (633 nm). Visible light is useful for alignment in a specific direction ("filo a piombo" not only vertical)

We must minimize the laser spot dimension on the whole working region (range $\pm z^{*}$) and to this aim we must design an optimal value of the beam waist $\left(w_{0}\right)$ in the center of the range: for this purpose we use a telescope to "widen the spot size to the desired dimension"

Laser alignment in constructions

Typical instrument for laser alignment and its use in the construction of gas pipeline (LaserLight AG, Munich)

Propagation of a laser Gaussian beam

$$
\begin{aligned}
& \sqrt{(\lambda z)^{2}} \quad \lambda z \quad w(z)=w_{0} \cdot \sqrt{1+\left(\frac{z}{z_{R}}\right)^{2}} \\
& w(z)=w_{0} 1+\left(\frac{\lambda z}{\pi w^{2}}\right) \cong \frac{\lambda z}{\pi w}=\theta z \text { for } z \gg z_{\mathrm{R}} \quad \text { Divergence of the } \\
& \text { laser spot (free space) } \\
& r(z)=z\left[1+\left(\frac{\pi w_{0}^{2}}{\lambda z}\right)^{2}\right] \cong z \quad \text { for } z \gg z_{\mathrm{R}} \quad \begin{array}{l}
\left.r(z)=z \cdot\left(\frac{z_{R}}{z}\right)\right] \\
\text { Curvature Radius }
\end{array}
\end{aligned}
$$

$r=\infty$ ot $z=0$ and at $z=\infty$ (plane wave) minimum $r_{\text {MIN }}=2 z_{\mathrm{R}}$ at $z=z_{\mathrm{R}}$

Propagation trough a lens

analogous of $1 / p+1 / q=1 / f$ for geometrical optics

1. know/measure the incident beam ($w_{0,1}$ or w_{1}, r_{1})
2. derive r_{2} [as $\left(1 / f-1 / r_{1}\right)^{-1}$]
3. use $w_{2}=w_{1} \quad$ ["thin lens"]
4. derive $w_{0,2}$ [propagation of a Gaussian beam over L_{2}] (knowing both r_{2} and w_{2}, from 2. and 3.)
Before ("object") and after ("image") the lens we have $\underline{w}_{0} / r=$ const. and also $\underline{w}_{0} / L=$ const. we see in the next side how ...

Propagation through a lens

$r_{1,2}$ are not easy to measure while measuring $L_{1,2}$ is simple

After propagating through a lens the beam undergoes a magnification $m=w_{0,2} / w_{0,1}=r_{2} / r_{1}=L_{2} / L_{1}$

$$
L_{2}=\left(\frac{1}{f}-\frac{1}{L_{1}}\right)^{-1}
$$

To "enlarge" $w_{0,1}$ with respect to $w_{0,2}$, one must work with $r_{1}>r_{2}$ and hence with the lens more distant from $w_{0,1}\left(L_{1}>L_{2}\right)$ then the distance from $w_{0,2}$ (or for $L_{1}<L_{2}$ one has $\left.w_{0,1}<w_{0,2}\right)$

Collimation over a range $\pm z^{*}$ through a telescope

Varying w_{0} we search the minimum $w\left(z^{*}\right)$, at fixed $\pm z^{*}$ distance from the beam waist... We differentiate the expression of the spot size w respect to w_{0}, or $y=[w]^{2}$ respect to $W=\left[w_{0}\right]^{2}$:

$$
\begin{gathered}
y=W\left[1+\left(\frac{\lambda z^{*}}{\pi W}\right)^{2}\right]=W+k W^{-1} \quad \frac{\partial y}{\partial W} \ldots \\
w_{0}=\sqrt{\frac{\lambda z^{*}}{\pi}} \frac{\partial y}{\partial W}=\frac{\partial w^{2}}{\partial w_{0}^{2}}=1-\left(\frac{z^{*}}{z_{\mathrm{R}}}\right)^{2}=0 \Rightarrow \begin{array}{l}
\text { the half-width of the } \\
\text { collimation range is }
\end{array} \\
z^{*}=\frac{\pi w_{0}^{2}}{\lambda}=z_{\mathrm{R}} \\
\end{gathered}
$$

Beam-sizing of the laser spot after a telescope

$w_{0, f} / w_{0 \mathrm{~L}} \cong f / d$ e $w_{0} / w_{0, f} \cong Z / F \Rightarrow w_{0} \cong(\mathrm{Z} / F) \cdot(f / d) w_{0 \mathrm{~L}}$
Spot magnification: $m=w_{0} / w_{0 L}=(Z / d) \cdot(1 / M)$ with $M=F / f=w_{F} / w_{f}$ telescope magnification
Typically one has $f \ll F$, and it is relatively easy to "adjust" the dimension $w_{0}(\propto f)$ and the distance Z by slightly moving the ocular (lens with focal length f) (in fact, in terms of relative variations: $\Delta w_{0} / w_{0}=\Delta f / f$)

Example of collimation of an He-Ne LASER for alignment

DATA:
He-Ne LASER with plano-concave cavity ($L=20 \mathrm{~cm}, R O C=1 \mathrm{~m}$).
We want to cover $\pm z^{*}= \pm \mathbf{2 0} \mathbf{~ m}$ with minimum spot dimensions: calculate the magnification m of the laser spot and the one M of the telescope. Imagine we use a telescope with ocular distance $d=10 \mathrm{~cm}$ and we want to work with $\mathrm{Z} \cong z^{*}=20 \mathrm{~m}$.
From $w_{0 \mathrm{~L}}=\sqrt{\frac{\lambda L}{\pi}}\left[\frac{R O C}{L}-1\right]^{1 / 4}$ we obtain $w_{0 \mathrm{~L}}=\mathbf{2 8 2} \boldsymbol{\mu \mathrm { m }} \approx \mathbf{0 . 3} \mathbf{~ m m}$
From $z^{*}=\frac{\pi w_{0}^{2}}{\lambda}=20 \mathrm{~m}$ we obtain $w_{0}=2 \mathrm{~mm} \quad$ (diam. $2 w_{0}=4 \mathrm{~mm}$)
From $w_{0} \cong(Z / F) \cdot(f / d) w_{0 \mathrm{~L}}$ we get $m=w_{0} / w_{0 \mathrm{~L}}=7.1=(Z / d) / M$ as magnification of the laser spot, whereas the magnification of the telescope is $M=F / f=(Z / d) / m=(20 / 0.1) / 7.1=28$
At $\pm 20 \mathrm{~m}$ from w_{0}, beam size is $D \cong 2 \cdot 1.41 w_{0} \cong 2.8 \cdot 2 \mathrm{~mm}=5.6 \mathrm{~mm}_{10138}$

CS7 qui termina la 6a lezione dell'AA 2005/2006

Telescope for alignment and marine channel directions

Typically an alignment system uses an $\mathrm{He}-\mathrm{Ne}(0.5-2 \mathrm{~mW})$ laser and a $50-\mathrm{mm}$ diameter telescope with magnification $M=20-50$. In practice the laser beam can remain collimated in a range from a few tens to a few hundreds of meters.
Using a telescope with $D=100 \mathrm{~mm}$ and a 10 mW He-Ne laser, the beam can be seen at a few miles distance:

Plot 3 square waves with different d.c. val. at left, center, right

CS8 qui inizia la 7a lezione dell'AA 2005/2006 Cesare Svelto; 05/04/2006

Alignment with the laser level

When we need to measure the height h or angle φ over a working surface (construction area, pool, rice field, ...)
A laser level distributes, over an area of radius 20-50 m, a beam "horizontal fan", at constant height, by changing the rotation angle
We need to "level" the laser beam: laser+telescope shine vertically (from bottom) a 45° mirror, or to a pentaprism, reflecting light at 90° and hence in the horizontal direction

Typical laser level instrumentation tripod mounted

Horizontal leveling of the laser level

The verticality reference is the normal to the surface of a fluid (water) in the bowl Reflected beam at the air-water interface is recombined with the launched beam and perfect alignment is observed trough interference at the detector (screen or 4-quadrant photodetector). With 2 prisms launch X and Y directions can be regulated

Beam centering on the target and position-sensitive photodetectors

For less stringent applications, like in constructions, it is sufficient an eye alignment ($\Delta x \approx \Delta y \approx 1 \mathrm{~mm}$)

For more accurate measurements, we use a photodetector to provide for an electric signal proportional to the alignment error. A feedback system allows the alignment control by minimizing the error signal.

The position-sensitive photodetector can be a special "photodiode" (4-quadrant photodiode, PSD sensor or even a CCD) or a normal photodiode coupled to a spatial reticule/mask (rotating reticule) transmitting light as a function of the impinging beam position

Transformation from angular into spatial (position) coordinate

When we need to measure the arrival direction (angle) of the optical beam, we use a collecting lens with focal distance f and we observe the displacement (position) off-axis of the laser spot in the lens focal plane:

Transformation law between angular and spatial coordinate is:

$$
r=f \cdot \tan (\theta) \approx f \cdot \theta \text { for } \theta \ll 1
$$

4-Quadrant photodiode (position sensor)

In the depletion region of the p-n junction, incident photons produce a current that can flow toward 4 distinct electrodes (one for each circular sector $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}$)

The 4 photocurrents can be combined to obtain two signals proportional to X and Y coordinates of the beam respect to the photodiode center:

$$
S_{\mathrm{x}}=\left(S_{2}+S_{4}\right)-\left(S_{1}+S_{3}\right) \quad S_{\mathrm{y}}=\left(S_{1}+S_{2}\right)-\left(S_{3}+S_{4}\right)
$$

We can also normalize respect to $P_{0} \propto S_{0}=\left(S_{1}+S_{2}+S_{3}+S_{4}\right)$

Extraction of X and Y coordinates from 4-Quadrant photodetector

OP-AMP circuit (transimpedance conversion of photocurrents and voltage sum/subtraction) to achieve the coordinate signals S_{X} e S_{Y} Spatial localization accuracy on the 4-Q depends on $P_{\text {spot }}$ and w and spot shape, and $g a p$ and $r_{\mathrm{PD}}: \sigma_{X, Y}=10 \%-3 \% \cdot r_{\mathrm{PD}}$

Dependence of the coordinate signal S_{X} $\left(S_{\mathrm{Y}}\right)$ from the coordinate value $X(Y)$ of the laser (or light) spot.
For small spot ($w_{0} \ll r_{\mathrm{PD}}$) response is squared with a small dead-zone at $X=0$ (or $Y=0$). For larger spot the signal is "linearized" (in the central region) 17/38

Angular position sensor with 4-Quadrant photodiode

A position sensitive detector (4-Q, PSD, reticule) other than indicator of X and Y coordinates can be used to detect angular $\left(\theta_{\mathrm{X}}\right.$ and $\left.\theta_{\mathrm{Y}}\right)$ coordinates of the arriving beam
If the sensor is placed in the focal plane of a lens, angular coordinate is transformed into a corresponding deflection coordinate : $X=F \boldsymbol{\theta}_{\mathbf{X}}$ and $Y=F \boldsymbol{\theta}_{\mathbf{Y}}$

PSD photodiode (scheme and principle)

High linearity over the whole measurement range
Position Sensitive Detector is a normal PIN photodiode with thin p and n regions lightly doped (to enhance the series resistance of p and n volumes at the border of the depletion region) Incident spot of (X, Y) coordinate produces a photocurrent flowing from electrodes Y (cathode) to electrodes X (anode)
The current, passing trough regions p and n of high resistivity is divided with the partitions rule between two resistors.
The difference in the detected currents on the same electrod pairs (X or Y) gives the coordinate (X o Y)

PSD photodiode (electrical model)

$$
\begin{aligned}
& R_{l}=x \rho^{*} \\
& R_{r}=(L-x) \rho^{*} \\
& R_{l}+R_{r}=L \rho^{*}
\end{aligned}
$$

ρ^{*} is the resistivity per unit length (in the slightly doped p region) we have current partitioning toward the two anodes $\mathrm{A}_{1}, \mathrm{~A}_{2}$ such as $I_{p h}=I_{l}+I_{r}$ with voltage

$$
\frac{R_{l} R_{r}}{R_{l}+R_{r}} I_{p h}=R_{l} I_{l}=R_{r} I_{r}
$$

$$
\left(I_{l}\right)=\frac{R_{r}}{R_{l}+R_{r}} I_{p h}=\frac{L-x}{L} I_{p h} \quad(I)=\frac{R_{l}}{R_{l}+R_{r}} I_{p h}=\frac{x_{1}}{L} I_{p h}
$$

PSD photodiode (working equations)

$$
I_{x 1}=I_{l}=\left(1-\frac{x}{L}\right) I_{p h} \quad I_{x 2}=I_{r}=\frac{x}{L} I_{p h}
$$

Similarly

$$
I_{y 1}=\left(1-\frac{y}{L}\right) I_{p h} \quad I_{y 2}=-\frac{y}{L} I_{p h}
$$

From the OP-AMP circuit we obtain
$S_{x}=-R\left(I_{x 1}-I_{x 2}\right)=\left(\frac{2 x}{L}-1\right) R I_{p h} \propto X$

$$
I_{p h}=\rho P
$$

$S_{Y}=-R\left(I_{y 2}-I_{y 1}\right)=\left(\frac{2 y}{L}-1\right) R I_{p h} \propto Y \quad \begin{aligned} & \boldsymbol{p}_{h}=\rho P \text { varying with } P \\ & \text { (and also with } \rho(1)\end{aligned}$ (and also with ρ !)
The output becomes independent from photocurrent $I_{p h}$ (and P) dividing for the sum signal $\Sigma_{\mathrm{X} / \mathrm{Y}}=R\left(I_{x / y / 1}+I_{x / p}\right)=R I_{p h}$
\Rightarrow measurement independent from P and \approx responsivity $(\rho)_{21 / 38}$

Position Sensing with Reticules

Transformation from angular into spatial coordinate (lens focal plane) and measurement of spatial coordinate (x, y) from polar coordinates $\left(\rho, \theta \equiv \Psi_{0}\right)$

Position sensing by a rotating reticule: light from a bright spot at the angle θ is imaged by the objective lens on the focal plane, where it is chopped by the reticule placed in front of the photodetector. By comparing the phase-shift of the square waveform from the photodetector and of a reference, the angular position $\Psi_{\underline{0}}$ of the
 source is determined.
The amplitude of the signal, $V_{\text {signal }}$, carries information on the polar coordinate ρ, similar to that of the quadrant PD .

Position Sensing with Reticules

The rising-sun (top) reticule provides a better suppression to extended sources of disturbance and digital counting of the angle ψ_{0}.

The digital readout reticule (bottom) supplies both ρ and ψ coordinates.

CS10 qui termina la 7a lezione dell'AA 2005/2006
Cesare Svelto; 05/04/2006

Measurements wires diameters from diffracted light analysis

angular distribution is
first zeroes of sinc are at
$I(\theta)=E_{0}{ }^{2} / \eta_{0} \cdot \operatorname{sinc}^{2} \pi \theta / \theta_{\mathrm{D}}$
$\theta_{\mathrm{D}}=\theta_{\text {diff: }}= \pm \lambda / D$ e $X_{\text {zero }}= \pm F \lambda / D$
hence we can obtain

$$
\underline{C N}_{\underline{D}}=\boldsymbol{F} \lambda \lambda X_{\text {zero }}
$$

For small wires (small D) we have $X_{\text {zero }}$ large and vice versa (it is easier - higher sensitivity - to measure wires with small diameter)
The distance between zeroes (or peaks) on the detector is proportional to $1 / D$

CS11 qui inizia la 8a lezione dell'AA 2005/2006

Cesare Svelto; 05/04/2006

Instrument for wire diameter measurement

Commercial instruments for wire diameter measurement, measurable diameters can range from $10 \mu \mathrm{~m}$ ($\pm 1 \%$ acc.) up to more than $2 \mathrm{~mm}(\pm 5 \%$ acc.)

The wire is passed trough an "U" aperture: direct monitoring during production, with online correction during the spinning process

Particle diameter measurement

LAELS: Low-Angle ELastic Scattering electric field on the detector is the Fourier transform of the aperture: transf. of circle is $\operatorname{somb}[(R / F) /(\lambda / D)]$

$$
\left[\left(\theta / \theta_{\text {diff }}\right)\right]
$$

The diameter analyzer measures diffracted light from suspended particles within a fluid. At the cell exit a lens converts angular diffraction profile into a corresponding spatial profile in the focal plane $(\theta \rightarrow R)$. A photodetector (scanned PD or CCD) measures $I(R)$: the distribution of particle diameters, $p(D)$, is calculated inverting
$I(R)=I_{0} \quad \int_{0-\infty} \operatorname{somb}^{2}[(D / \lambda)(R / F)] \cdot p(D) \mathrm{d} D \quad$ with $(R / F)=\tan \theta \cong \theta$
$\operatorname{somb}(x)=2\left[J_{1}(\pi x)\right] / \pi x$

Particle Size Measurement 2

Methods to solve for $\mathrm{p}(\mathrm{D})$ from measured data $I(\theta)$

- Analytical Inversion

$$
p(D)=-\left[(4 \pi / D)^{2} / \lambda\right] \int_{\theta=0-\infty} K(\pi D \sin \theta / \lambda) d\left[\theta^{3} I(\pi D \sin \theta / \lambda)\right] / I_{0}
$$ a theoretically nice result but impractical to be used.

- Least Square Method

Using a discrete approximation for $p(D)=p_{k}$ and $I(\theta)=I_{n}$ and letting $S_{\mathrm{nk}}=s o m b^{2}\left[\left(D_{k} / \lambda\right) \sin \theta_{\mathrm{n}}\right]$, we get a set of equations:

$$
I_{n}=\Sigma_{k=1 . K} S_{n k} p_{k} \quad(n=1 . . N)
$$

N is the number of angular measurements performed on the intensity, K is the number of unknown diameters. We start with $\mathrm{K}<\mathrm{N}$ and close the set adding $\mathrm{N}-\mathrm{K}$ equations from the LSM condition, sought from:

$$
\varepsilon^{2}=\Sigma_{\mathrm{n}=1 . \mathrm{N}}\left[I_{\mathrm{n}}-\Sigma_{\mathrm{k}=1 . \mathrm{K}} S_{\mathrm{nk}} p_{\mathrm{k}}\right]^{2}=\min
$$

Particle Size Measurement 3

Taking the derivative respect $p_{k} \leqslant s$ and equating to zero gives:

$$
0=\partial\left(\varepsilon^{2}\right) / \partial p_{k}=\Sigma_{n=1 . N} 2\left[I_{n}-\Sigma_{k=1 . K} S_{n k} p_{k}\right]\left(-S_{n k}\right)
$$

and rearranging we get

$$
J_{\mathrm{h}}=\Sigma_{\mathrm{k}=1 . \mathrm{K}} Z_{\mathrm{hk}} \mathrm{p}_{\mathrm{k}}=(\mathrm{h}=1 . \mathrm{K})
$$

where we have let $J_{h}=\Sigma_{n=1 . \mathrm{N}} I_{\mathrm{n}} \mathrm{S}_{\mathrm{nh}}$ and $Z_{\mathrm{nk}}=\sum_{\mathrm{n}=1 . \mathrm{N}} \mathrm{S}_{\mathrm{nk}}{ }^{2}$
Now, the number of equations is equal to the number of unknown and we can solve for p_{k} with standard algebra. Usually, the range of diameters of interest may be large (for example, two decades from 2 to $200 \mu \mathrm{~m})$ but the number of affordable diameter is modest (e.g. $K=6-9$) at $\pm 10 \%$ accuracy.

Particle Size Measurement 4 *

-Iterative Methods. They are based on the following approach: if the set of diameter p_{k} is correct, it should give the measured distribution $I_{n . c a l e}=\Sigma_{k} C_{n k} p_{k}$. If these values $I_{n . c a l c}$ differ from experimental values $I_{k . m e a s}$, then we may expect to approach the solution if we multiply p_{k} by $\mathrm{I}_{\mathrm{k} . \text { meas }} \Lambda_{\mathrm{k} . \mathrm{calc}}$.
Using $\mathrm{p}_{\mathrm{k}+1}=\mathrm{I}_{\mathrm{k} . \text { meas }} \Pi_{\mathrm{k} \text {.calc }} \mathrm{p}_{\mathrm{k}}$ and repeating an adequate number of times, p_{k} should converge to the correct solution (there is no clear sign of convergence, however)
A refinement of Chahine's method consists in weighting the iteration by the normalized kernel, $\mathrm{S}_{\mathrm{nk}} / \sum_{\mathrm{n}=1 . \mathrm{N}} \mathrm{S}_{\mathrm{nk}}$, using
$\mathrm{p}_{\mathrm{k}+1}=\left(\mathrm{S}_{\mathrm{nk}} / \Sigma_{\mathrm{n}=1 . \mathrm{N}} \mathrm{S}_{\mathrm{nk}}\right)\left(\mathrm{I}_{\mathrm{k} . \text {.meas }} / I_{\mathrm{k} . \text {.calc }}\right) \mathrm{p}_{\mathrm{k}}$
In this way, spurious peaks found in Chahine's method are suppressed, and resolution and dynamic range are improved

Particle Size Measurement 5 *

Common errors in the PSM: finite size of detector, beam waist effects, lens vignetting, and undiffracted beam $(\theta=0)$, important for small θ (large D).
Better than a stop to block it out, we can use the filtering known as reverse Fourier-transform illumination, with a convergent beam to illuminate the cell. Diffracted rays (dotted lines) are focused on axis, and pass through the pinhole, whereas undiffracted rays arrive out-of-axis and are blocked.

Particle Size Measurement 6

Particle Size Measurement 7

An example of an-easy-to-get particle size pdf $p(D)$ and cdf $P(D)$ distribution measured by a commercial instrument (courtesy of CIL AS)

Particle Size Measurement 8 *

- In the Rayleigh regime $r \ll \lambda$, the scattering is nearly isotropic in angle and the extinction factor $\boldsymbol{Q}_{\text {ext }}$ varies as $(r / \lambda)^{4}$.
- When r increases up to about $r \approx \lambda$, (intermediate regime) the

Rayleigh $r \ll 2$

intermediate $1-\lambda$

Mie $r \ggg$

$Q_{\text {ext }}$ tells how much the light extinction cross section (due to scattering) is larger than the physical area $\left(\pi r^{2}\right)$ of the diffusing particle

Particle Size Measurement 9 *

- Another method is SEAS (Spectral Extinction Aerosol Sizing). It is based on measuring light scattered from the cell at a fixed angle, while scanning λ instead of θ. By varying the ratio D / λ, the extinction factor $Q_{\text {ext }}(D, \lambda, n)$ varies and the scattered power too, according to:

$$
\mathrm{I}\left(\lambda, 45^{\circ}\right)=\mathrm{f}\left(45^{\circ}\right)(\Delta \Omega / 4 \pi) \mathrm{I}_{0} \int_{0-\infty} \mathrm{Q}_{\mathrm{ext}}(\mathrm{D}, \lambda, \mathrm{n}) \mathrm{p}(\mathrm{D}) \mathrm{dD}
$$

where $f(\theta)=$ scattering function, $Q_{\mathrm{ext}}=$ extinction factor. The equation is the counterpart of that for extinction-related measurement, and all the methods of inversion of the Fredholm's integral can now be applied on D_{k} and λ_{n}. With SEAS we may to go down to $0.02-0.1 \mu \mathrm{~m}$ as the minimum measurable size, overlapping with the LAELS low-range ($\approx 2-5 \mu \mathrm{~m}$).

- A last method is the Dynamical Scattering Size Analyzer (DSSA), useful for very small (1.100-nm) particles. Based on the frequency shift due to Doppler effect $\left(\mathrm{k}_{0}-\underline{k}_{\mathrm{i}}\right)$ v, it is measured by the time-domain autocorrelation function $C(\tau)=(1 / T) \int_{0 .-1} i(t) i(t+\tau) \mathrm{dt}$ which depends from the diffusion constant δ of particles according to: $\mathrm{C}(\tau)=\mathrm{C}_{0} \exp -\delta\left(\mathrm{k}_{\mathrm{o}}-\mathrm{k}_{\mathrm{i}}\right)^{2} \tau$.

Particle Size Measurement 10

Particle Size Measurement 11

Particle Size Measurement 12

A second example of particle size pdf $p(D)$ and cumulative $P(D)$ of a bi-modal distribution, more difficult because with both small and large particles, as measured by a commercial instrument (courtesy of CILAS)

Particle Size Measurement 13

A third example of particle size pdf $p(D)$ and cumulative $P(D)$ of a distribution with two populations of very large particles (powders) as measured by a commercial granulometer (courtesy of CILAS)

