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Summary

• Propagation and transformation (focusing, widening-
and-collimation) of gaussian beams

• Position sensitive detectors of laser beam
- 4-quadrants photodiodes
- PSD (Position Sensitive Detector)
- reticle detectors

• Laser level

• Wire diameter measurement

• Optical measurement of particulate dimensions



3/38

Laser alignment 

One property of laser sources is the possibility of keeping 
the optical bem well collimated (slightly divergent and 
hence with “constant spot size" during propagation)

The divergence limit posed by diffraction theory (TEM00)
is “easy to meet”: e.g. for an He-Ne LASER (633 nm).
Visible light is useful for alignment in a specific direction
("filo a piombo" not only vertical)

We must minimize the laser spot dimension on the whole 
working region (range ±z*) and to this aim we must design 
an optimal value of the  beam waist (w0) in the center of the 
range: for this purpose we use a telescope to “widen the 
spot size to the desired dimension"
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Laser alignment in constructions

Typical instrument for laser alignment and
its use in the construction of gas pipeline
(LaserLight AG, Munich)
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Propagation of a laser Gaussian beam

Divergence of the 
laser spot (free space)

Output beam from a laser (e.g. He-Ne)
with plane-spherical cavity

ROC
beam waist in the
plane-spherical resonator

it must
be
L≤ROC

r=∞∞∞∞ ot z=0 and at z=∞∞∞∞ (plane wave)minimum rMIN=2zR at z=zR

Curvature Radius
of the wave front



6/38

Propagation trough a lens

f

Transformation of the curvature radii 
trough a lens (for a “thin lens” w2=w1)

w0,1 w0,2

L1 L2

1. know/measure the incident beam (w0,1 or w1,r1)                            
2. derive r2   [ as ( 1/f - 1/r1 )

-1 ]
3. use w2=w1 [ “thin lens" ] 
4. derive w0,2 [ propagation of a Gaussian beam over L2]

(knowing both r2 and w2, from 2. and 3.)

Before (“object") and after ("image") the lens we have w0 /r=const.
and also w0 /L=const.we see in the next side how …

analogous of 1/p+1/q=1/f for geometrical optics

w1 w2
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Propagation through a lens

To “enlarge" w0,1 with respect to w0,2, one must work with 
r1>r2 and hence with the lens more distant from w0,1 (L1>L2) 
then the distance from w0,2 (or for L1<L2 one has w0,1<w0,2)

f

Transformation of the radii of curvature 
through a lens (for a thin lens w2=w1)

w0,1 w0,2

L1 L2

After propagating through a lens the beam undergoes a 
magnification m=w0,2 /w0,1=r2 /r1=L2 /L1

If z>zR (z>>zR) ⇒⇒⇒⇒ r1,2≅≅≅≅L1,2 and hence θ1r1≅w1=w2≅θ2r2 ⇒
r1/w0,1 ≅r2 /w0,2 w0,1 /w0,2≅≅≅≅r1 /r2≅≅≅≅L1 /L2 e w0,1 /L1≅≅≅≅w0,2 /L2

being θθθθ=λλλλ/ππππw0

w1 w2

r1,2 are not easy to measure while measuring L1,2 is simple
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Collimation over a range ±z*

through a telescope

**

w(z*)

Varying w0 we search the minimum w(z*), at fixed ±z* distance
from the beam waist... We differentiate the expression of the 
spot size w respect to w0, or y=[w]

2 respect to W=[w0]
2:

condition for collimation over a range ±z*

⇒⇒⇒⇒

the half-width of the 
collimation range is

with  w(z*)≅1.4w0

k
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Beam-sizing of the laser spot
after a telescope

**

w0,f

w0,f /w0L≅≅≅≅f /d e  w0 /w0,f ≅≅≅≅Z /F ⇒⇒⇒⇒ w0 ≅≅≅≅ (Z /F) ⋅⋅⋅⋅(f /d)w0L  

Spot magnification:  m=w0 /w0L=(Z/d)⋅(1/M)
with M = F / f = wF / wf telescope magnification

Typically one has f<<F, and it is relatively easy to 
“adjust" the dimension w0 (∝f ) and the distance Z by 
slightly moving the ocular (lens with focal length f )
( in fact, in terms of relative variations: ∆w0/w0 = ∆f/f )

wf

wF
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Example of collimation of an 
He-Ne LASER for alignment

DATA:
He-Ne LASER with plano-concave cavity (L=20 cm, ROC=1 m).
We want to cover ±±±±z*=±±±±20 m with minimum spot dimensions:
calculate the magnification m of the laser spot and the one M of the telescope.

From                                       we obtain w0L=282 µµµµm ≈≈≈≈ 0.3 mm

From                     =20 m   we obtain w0=2 mm (diam. 2w0=4 mm)

Imagine we use a telescope with ocular distance d=10 cm
and we want to work with Z≅z*=20 m.

From w0 ≅ (Z/F) ⋅ ( f/d)w0L we get m=w0/w0L= 7.1 = (Z/d)/M as 
magnification of the laser spot, whereas the magnification of the 
telescope is M = F/f = (Z/d)/m = (20/0.1)/7.1 = 28

At ±20 m from w0, beam size is D≅≅≅≅2 ⋅1.41w0 ≅ 2.8 ⋅2mm= 5.6mm

CS7
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Telescope for alignment 
and marine channel directions

Typically an alignment system uses an He-Ne (0.5-2 mW) laser 
and a 50-mm diameter telescope with magnification M=20-50. 
In practice the laser beam can remain collimated in a range 
from a few tens to a few hundreds of meters.

Using a telescope with D=100 mm and a 10 mW He-Ne laser, 
the beam can be seen at a few miles distance:

2/3T

1/3T

T

prism

Imax=P/Aeye< MPE

Plot  3 square waves
with different d.c. val. 
at left, center, right

CS8
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Alignment with the laser level

When we need to measure the height h
or angle ϕϕϕϕ over a working surface
(construction area, pool, rice field, ...)

A laser level distributes, over an area of radius 
20-50 m,  a beam “horizontal fan", at constant 
height, by changing the rotation angle

Typical laser level 
instrumentation 
tripod mounted

We need to “level" the laser beam:  laser+telescope 
shine vertically (from bottom) a 45° mirror, or to a 
pentaprism, reflecting light at 90° and hence in the 
horizontal direction
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Horizontal leveling of the laser level

The verticality 
reference is the 
normal to the 
surface of a fluid 
(water) in the bowl 
Reflected beam at 
the air-water 
interface is 
recombined with 
the launched beam 
and perfect 
alignment is 
observed trough 
interference at 
the detector
(screen or 
4-quadrant 
photodetector).
With 2 prisms 
launch X and Y 
directions can be 
regulated

just the pentaprism is 
rotating: transforming 
the beam from vertical 
into horizontal
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Beam centering on the target and 
position-sensitive photodetectors

For less stringent applications, like in constructions, it is 
sufficient an eye alignment (∆x≈∆y≈1mm)

For more accurate measurements, we use a photodetector to 
provide for an electric signal proportional to the alignment 
error. A feedback system allows the alignment control by 
minimizing the error signal.

The position-sensitive photodetector can be a special 
“photodiode” (4-quadrant photodiode, PSD sensor or even 
a CCD) or a normal photodiode coupled to a spatial 
reticule/mask (rotating reticule) transmitting light as a 
function of the impinging beam position
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Transformation from angular 
into spatial (position) coordinate

When we need to measure the arrival direction (angle) of 
the optical beam, we use a collecting lens with focal distance 
f and we observe the displacement (position) off-axis of the 
laser spot in the lens focal plane:

Transformation law between angular and spatial coordinate is:  

r = f⋅⋅⋅⋅tan(θθθθ ) ≈≈≈≈ f⋅⋅⋅⋅θθθθ for θθθθ << 1

θθθθ

f

r

L
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4-Quadrant photodiode (position sensor)

In the depletion 
region of the p-n 
junction, incident 
photons produce a 
current that can 
flow toward 4 
distinct electrodes 
(one for each 
circular sector
S1, S2, S3, S4)

The 4 photocurrents can be combined to obtain two 
signals proportional to X and Y coordinates of the beam 
respect to the photodiode center:

SX=(S2+S4)-(S1+S3)                 SY=(S1+S2)-(S3+S4)

rPD=0.2-2mm
gap: 5-10µµµµm

We can also normalize respect to P0∝S0=(S1+S2+S3+S4)
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Extraction of X and Y coordinates 
from 4-Quadrant photodetector

Dependence of the coordinate signal  SX
(SY) from the coordinate value X (Y) of 
the laser (or light) spot.
For small spot (w0<<rPD) response is 
squared with a small dead-zone at X=0 
(or Y=0). For larger spot the signal is 
“linearized” (in the central region)

OP-AMP circuit (transimpedance 
conversion of photocurrents and 
voltage sum/subtraction) to achieve 
the coordinate signals SX e SY

La risposta del sensore dipende fortemente 
dalla dimensione e forma dello spot incidente

w/rPD

Spatial localization accuracy on the 4-Q 
depends on Pspot and w and spot shape, 
and gap and rPD: σσσσX,Y=10%-3%⋅⋅⋅⋅rPD
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Angular position sensor 
with 4-Quadrant photodiode

If the sensor is placed in the focal plane of a lens, angular coordinate is 
transformed into a corresponding deflection coordinate :  X = FθθθθX and Y = FθθθθY

A position sensitive detector (4-Q, PSD, reticule) other than indicator of X 
and Y coordinates can be used to detect angular (θX and θY) coordinates 
of the arriving beam

Field Of View 
θθθθFOV = rPD /F

F
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PSD photodiode (scheme and principle)

Position Sensitive Detector
is a normal PIN photodiode 
with thin p and n regions 
lightly doped (to enhance the 
series resistance of p and n 
volumes at the border of the 
depletion region)
Incident spot of (X,Y) 
coordinate produces a 
photocurrent flowing from 
electrodes Y (cathode) to 
electrodes X (anode)

The current, passing trough 
regions p and n of high 
resistivity is divided with the 
partitions rule between two 
resistors.
The difference in the detected 
currents on the same electrode 
pairs (X or Y) gives the 
coordinate (X o Y)

'Si' for λλλλ=400-1100 nm
with L=0.5-5 mm

left        right

the photodiode is 
reverse bias polarized

High linearity over the 
whole measurement range



20/38

PSD photodiode  (electrical model)

Rl=xρρρρ*

Rr=(L-x)ρρρρ
*

Rl+Rr=Lρρρρ*

ρρρρ* is the resistivity per unit length 
(in the slightly doped p region)

we have current partitioning
toward the two anodes A1 , A2

such as  Iph=Il+Ir

Il

RrRl

ANODES

I ZONE

Iph

Ir

Rl Rr
Iph

x             (L-x)

A1 A2

with voltage
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PSD photodiode (working equations)

Similarly

From the OP-AMP circuit we obtain

The output becomes independent from photocurrent Iph (and P) 
dividing for the sum signal ΣX/Y=R(Ix/y1+Ix/y2)=RIph
⇒measurement independent from P and ≈responsivity ( ρ )

Iph=ρP
varying with P
(and also with ρ!)
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Position Sensing with Reticules

Position sensing by a rotating 

reticule: light from a bright spot at 

the angle θ is imaged by the 

objective lens on the focal plane, 

where it is chopped by the reticule 

placed in front of the photodetector.  

By comparing the phase-shift of 

the square waveform from the 

photodetector and of a reference, 

the angular position ψψψψ0 of the 

source is determined.

The amplitude of the signal, Vsignal , 

carries information on the polar 

coordinate ρρρρ, similar to that of the 

quadrant PD.

ρ
RP

D

Transformation from angular into spatial coordinate (lens focal plane) and 
measurement of spatial coordinate (x,y) from polar coordinates (ρ ,θ =Ψ0)
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Position Sensing with Reticules

The rising-sun (top) 

reticule provides a 

better suppression to 

extended sources of 

disturbance and 

digital counting 

of the angle ψ0.

The digital readout 

reticule (bottom) 

supplies both ρ and 

ψ coordinates. 

??? ???

fuori dal 50%, inizia alto T=1 e termina basso T=0

inizia a T=1 e termina a T=0

inizia a T=1 e termina a T=0

f ∝∝∝∝ ρρρρ

T=1

T=0

5½ picchi (bianco con T=1)
??? 1.5 di troppo!!!

4½ picchi (bianco con T=1)
??? 2.5 di meno!!!

in realtà il diagramma temporale è quasi corretto ma il disegno è 
errato (ci vogliono tanti T=0 quanti T=1 per dare in media T=0.5)

qui ci 
manca
una 
“fettina”
bianca

CS10
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angular distribution is I(θθθθ ) = E0
2 ////ηηηη0000 ⋅⋅⋅⋅ sinc2 ππππθθθθ /θθθθD

first zeroes of sinc are at        θD=θdiff.=±λ/D e   Xzero=±Fλ/D

hence we can obtain D = Fλλλλ////Xzero

D

Measurements wires diameters
from diffracted light analysis

electric field on the detector is the 
Fourier transform of the aperture:
transf. of rectangle is   sinc[ππππθθθθ/(λλλλ/D)]

{

θθθθD

∝∝∝∝

For small wires (small D) we have Xzero large and vice versa
(it is easier – higher sensitivity – to measure wires with small diameter)

=θ /θ
diff.

The distance between zeroes (or peaks) on the detector is proportional to  1/D

CS11
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Commercial instruments 
for wire diameter 
measurement, 
measurable diameters 
can range from 10 µm 
(±1% acc.) up to more 
than 2 mm (±5% acc.) 

aperture telescope
He-Ne lens and 

detector

Instrument for wire diameter measurement

The wire is passed 
trough an "U“ aperture: 
direct monitoring 
during production, 
with online correction 
during the spinning 
process
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The diameter analyzer measures diffracted light from suspended
particles within a fluid. At the cell exit a lens converts angular
diffraction profile into a corresponding spatial profile in the focal
plane (θ �R). A photodetector (scanned PD or CCD) measures I(R):
the distribution of particle diameters, p(D), is calculated inverting

LAELS: Low-Angle ELastic Scattering
electric field on the detector is the Fourier 
transform of the aperture:
transf. of circle is       somb[(R/F)/(λλλλ/D)]

I(R) = I0 ∫∫∫∫0-∞ somb2[(D/λλλλ)(R/F)]⋅⋅⋅⋅ p(D) dD with(R/F)=tanθθθθ ≅≅≅≅θθθθ

somb(x)=2[J1(ππππx)]/ππππx

Particle diameter measurement

PDF

[(θθθθ /θθθθdiff.)]
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Particle Size Measurement 2

Methods to solve for p(D) from measured data I(θ) 

- Analytical Inversion

p(D) = -[(4π/D)2/λ] ∫θ=0-∞ K(πDsinθ/λ) d[θ3 I(πDsinθ/λ)] /I0

a theoretically nice result but impractical to be used.

- Least Square Method

Using a discrete approximation for p(D)=pk and  I(θ)=In  and  

letting Snk= somb2[(Dk/λ)sinθn] , we get a set of equations:

In = Σk=1..K Snk pk (n=1..N)

N is the number of angular measurements performed on the
intensity, K is the number of unknown diameters.We start with
K<N and close the set adding N-K equations from the LSM
condition, sought from:

ε2 = Σn=1..N [ In - Σk=1..K Snk pk]
2 = min
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Particle Size Measurement 3

Taking the derivative respect pk‘s and equating to zero gives:

0 = ∂(ε2)/∂pk = Σn=1..N 2[ In - Σk=1..K Snk pk](-Snk)

and rearranging we get

Jh =  Σk=1..K Zhk pk (h=1..K)

where we have let Jh =Σn=1..N InSnh and    Znk= Σn=1..N Snk
2

Now, the number of equations is equal to the number of unknown and we can 

solve for pk with standard algebra.
Usually, the range of diameters 

of interest may be large (for 

example, two decades from 2 to 

200µm) but the number of 

affordable diameter is modest 

(e.g. K=6-9) at ±10% accuracy.
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Particle Size Measurement 4 *

-Iterative Methods.  They are based on the following approach: 

if the set of diameter pk is correct, it should give the measured 

distribution In.calc= ΣkCnk pk. If these values In.calc differ from 

experimental values Ik.meas, then we may expect to approach the 

solution if we multiply pk by Ik.meas/Ik.calc. 

Using pk+1 = Ik.meas/Ik.calc pk and repeating an adequate number 

of times, pk should converge to the correct solution (there is no 

clear sign of convergence, however)

A refinement of Chahine’s method consists in weighting the 

iteration by the normalized kernel, Snk/ Σn=1..NSnk, using 

pk+1 = (Snk/Σn=1..NSnk)(Ik.meas/Ik.calc) pk

In this way, spurious peaks found in Chahine’s method are 

suppressed, and resolution and dynamic range are improved
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Particle Size Measurement 5 *

Common errors in the PSM: finite size of detector, beam waist effects, lens

vignetting, and undiffracted beam (θ=0), important for small θ (large D).

Better than a stop to block it out, we can use the filtering known as reverse

Fourier-transform illumination, with a convergent beam to illuminate the

cell. Diffracted rays (dotted lines) are focused on axis, and pass through the

pinhole, whereas undiffracted rays arrive out-of-axis and are blocked.
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Particle Size Measurement  6

A modern, general purpose  particle-size analyzer based on diffraction 

performs diameter measurements from 1 to 2500 µm [by CILAS, France]
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Particle Size Measurement  7

An example of an-easy-to-get particle size pdf p(D) and cdf P(D)

distribution measured by a commercial instrument (courtesy of CILAS)
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Particle Size Measurement 8 *

• In the Rayleigh regime r<<λ, 

the scattering is nearly isotropic

in angle and the extinction factor 

Qext varies as (r/λλλλ)4. 

• When r increases up to about

r ≈λ, (intermediate regime) the 

scattering function f(θ) is mainly 

forward and the extinction factor 

increases up to Qext≈2-4.

• For r >>λ we enter in the Mie

regime, extinction Qext is nearly 

constant (in λ) at ≈2 and f(θ) is 

strongly peaked forward

Qext tells how much the light extinction cross section (due to scattering) is larger 
than the physical area (πr2) of the diffusing particle
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Particle Size Measurement 9 *

• Another method is SEAS (Spectral Extinction Aerosol Sizing). It is based

on measuring light scattered from the cell at a fixed angle, while scanning λ
instead of θ. By varying the ratio D/λ, the extinction factor Qext(D,λ,n) varies

and the scattered power too, according to:

I(λ,45°) = f(45°) (∆Ω/4π) I0 ∫0-∞ Qext(D,λ,n) p(D) dD

where f(θ)=scattering function, Qext=extinction factor. The equation is the

counterpart of that for extinction-related measurement, and all the methods of

inversion of the Fredholm’s integral can now be applied on Dk and λn. With

SEAS we may to go down to 0.02–0.1µµµµm as the minimum measurable size,

overlapping with the LAELS low-range (≈ 2-5 µm).

• A last method is the Dynamical Scattering Size Analyzer (DSSA), useful 

for very small (1..100-nm) particles. Based on the frequency shift due to 

Doppler effect (ko-ki)
. v, it is measured by the time-domain autocorrelation 

function C(τ)=(1/T)∫0-Ti(t)i(t+τ)dt  which depends from the diffusion constant 

δ of particles according to: C(τ)=C0 exp –δ (ko-ki)
2τ.
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Particle Size Measurement 10

A SEAS particle size analyzer uses scattering data at 135° to sort 

submicronic particulate (typ. of metropolitan area pollutants) from 0.02 to 

0.1 µm [by CILAS, France]
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Particle Size Measurement  11

A modern particle-size analyzer based on diffraction and extinction 

(LAELS + SEAS), performs diameter measurements 

from 0.05 to 2500 µm [by CILAS, France]
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Particle Size Measurement 12

A second example of particle size pdf p(D) and cumulative P(D) of a 

bi-modal distribution, more difficult because with both small and large 

particles, as measured by a commercial instrument (courtesy of CILAS)
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Particle Size Measurement 13

A third example of particle size pdf p(D) and cumulative P(D) of a 

distribution with two populations of very large particles (powders) as 

measured by a commercial granulometer (courtesy of CILAS)


