"Optical Measurements" Master Degree in Engineering Automation-, Electronics-, Physics-, Telecommunication- Engineering

Alignment/Pointing and Dimensional Measurements

Prof. Cesare Svelto Politecnico di Milano

Some pictures are taken from the Book "Electro-Optical Instrumentation: Sensing and Measuring with Lasers" by Prof. Silvano Donati

Summary

- **Propagation and transformation** (focusing, wideningand-collimation) of gaussian beams
- **Position sensitive detectors** of laser beam
 - 4-quadrants photodiodes
 - PSD (Position Sensitive Detector)
 - reticle detectors
- Laser level
- Wire diameter measurement
- Optical measurement of **particulate dimensions**

— Laser alignment

One property of **laser sources** is the possibility of keeping the **optical bem well collimated** (slightly divergent and hence with **"constant spot size**" during propagation)

The **divergence limit** posed by **diffraction theory (TEM**₀₀) is "easy to meet": *e.g.* for an **He-Ne LASER (633 nm)**. Visible light is useful for **alignment** in a specific **direction** ("<u>filo a piombo</u>" not only vertical)

We must **minimize the laser spot dimension** on the whole working region (range $\pm z^*$) and to this aim we must design an **optimal value of the** *beam waist* (w_0) in the center of the range: for this purpose we use a **telescope** to "**widen the spot size** to the desired dimension"

Laser alignment in constructions

Typical instrument for laser alignment and its use in the construction of gas pipeline (LaserLight AG, Munich)

Propagation of a laser Gaussian beam

$$w(z) = w_0 \sqrt{1 + \left(\frac{\lambda z}{\pi w_0^2}\right)^2} \cong \frac{\lambda z}{\pi w_0} = \theta z \text{ for } z >> z_R \text{ Divergence of the laser spot (free space)}$$

$$r(z) = z \left[1 + \left(\frac{\pi w_0^2}{\lambda z}\right)^2\right] \cong z \text{ for } z >> z_R \text{ for } z >> z_R$$

 $r = \infty$ ot z = 0 and at $z = \infty$ (plane wave) minimum $r_{MIN} = 2z_R$ at $z = z_R$

5/38

1. know/measure the incident beam ($w_{0,1}$ or w_1, r_1)

- 2. derive r_2 [as $(1/f 1/r_1)^{-1}$]
- 3. use $w_2 = w_1$ ["thin lens"]
- 4. derive $w_{0,2}$ [propagation of a Gaussian beam over L_2] (knowing both r_2 and w_2 , from 2. and 3.)

Before ("object") and after ("image") the lens we have $w_0/r = \text{const.}$ and also $w_0/L = \text{const.}$ we see in the next side how ...

Beam-sizing of the laser spot after a telescope

$w_{0,f}/w_{0L} \cong f/d \in w_0/w_{0,f} \cong Z/F \implies w_0 \cong (Z/F) \cdot (f/d) w_{0L}$

Spot **magnification**: $m = w_0 / w_{0L} = (Z/d) \cdot (1/M)$ with $M = F / f = w_F / w_f$ telescope magnification

Typically one has f << F, and it is relatively easy to "adjust" the dimension $w_0 (\propto f)$ and the distance Z by slightly moving the ocular (lens with focal length f) (in fact, in terms of relative variations: $\Delta w_0 / w_0 = \Delta f / f$) 9/38

Example of collimation of an He-Ne LASER for alignment

DATA:

CS7

He-Ne LASER with plano-concave cavity (*L*=20 cm, *ROC*=1 m). We want to cover $\pm z^* = \pm 20$ m with minimum spot dimensions: <u>calculate the magnification *m* of the laser spot and the one *M* of the telescope. Imagine we use a telescope with ocular distance *d*=10 cm and we want to work with $Z \cong z^* = 20$ m.</u>

From $w_{0L} = \sqrt{\frac{\lambda L}{\pi}} \left[\frac{ROC}{L} - 1 \right]^{\frac{1}{4}}$ we obtain $w_{0L} = 282 \ \mu m \approx 0.3 \ mm$ From $z^* = \frac{\pi w_0^2}{\lambda} = 20 \ m$ we obtain $w_0 = 2 \ mm$ (diam. $2w_0 = 4 \ mm$) From $w_0 \cong (Z/F) \cdot (f/d) \ w_{0L}$ we get $m = w_0 / w_{0L} = 7.1 = (Z/d) / M$ as magnification of the laser spot, whereas the magnification of the laser spot, whereas the magnification of the telescope is M = F/f = (Z/d) / m = (20/0.1) / 7.1 = 28At $\pm 20 \ m$ from w_0 , beam size is $D \cong 2 \cdot 1.41 w_0 \cong 2.8 \cdot 2 \ mm = 5.6 \ mm_{10/38}$

Diapositiva 10

qui termina la 6a lezione dell'AA 2005/2006 Cesare Svelto; 31/03/2006 CS7

Typically an alignment system uses an He-Ne (0.5-2 mW) laser and a 50-mm diameter telescope with magnification M=20-50. In practice the laser beam can remain collimated in a range from a few tens to a few hundreds of meters.

Using a telescope with *D*=100 mm and a 10 mW He-Ne laser, the beam can be seen at a few miles distance:

Plot 3 square waves with different d.c. val. at left, center, right

CS8

11/38

Diapositiva 11

qui inizia la 7a lezione dell'AA 2005/2006 Cesare Svelto; 05/04/2006 CS8

Alignment with the laser level

When we need to **measure the height** *h* **or angle** *\varphi* over a **working surface** (construction area, pool, rice field, ...)

A laser level distributes, over an area of radius 20-50 m, a beam "horizontal fan", at constant height, by changing the rotation angle

We need to **"level" the laser beam**: laser+telescope shine <u>vertically</u> (from bottom) a 45° mirror, or to a pentaprism, reflecting light at 90° and hence in the horizontal direction

Typical laser level instrumentation tripod mounted 12/38

• Horizontal leveling of the laser level

The verticality reference is the normal to the surface of a fluid (water) in the bowl Reflected beam at the air-water interface is recombined with the launched beam and perfect alignment is observed trough interference at the detector (screen or 4-quadrant photodetector). With 2 prisms launch \dot{X} and Ydirections can be regulated 13/38

Beam centering on the target and position-sensitive photodetectors

For less stringent applications, like in constructions, it is sufficient an **eye alignment** ($\Delta x \approx \Delta y \approx 1 \text{ mm}$)

For more accurate measurements, we use a **photodetector** to provide for an **electric signal proportional to the alignment error**. A feedback system allows the **alignment control** by **minimizing the error signal**.

The position-sensitive photodetector can be a special "photodiode" (4-quadrant photodiode, PSD sensor or even a CCD) or a normal photodiode coupled to a spatial reticule/mask (rotating reticule) transmitting light as a function of the impinging beam position Transformation from angular into spatial (position) coordinate

When we need to measure the **arrival direction (angle)** of the optical beam, we use a collecting lens with focal distance f and we observe the **displacement (position)** off-axis of the **laser spot in the lens focal plane**:

Transformation law between angular and spatial coordinate is: $r = f \cdot tan(\theta) \approx f \cdot \theta$ for $\theta << 1$

4-Quadrant photodiode (position sensor)

In the depletion region of the p-n junction, incident photons produce a current that can flow toward 4 distinct electrodes (one for each circular sector S_1, S_2, S_3, S_4)

The 4 photocurrents can be combined to obtain two signals proportional to X and Y coordinates of the beam respect to the photodiode center:

$$S_{X} = (S_{2} + S_{4}) - (S_{1} + S_{3})$$
 $S_{Y} = (S_{1} + S_{2}) - (S_{3} + S_{4})$

We can also normalize respect to $P_0 \propto S_0 = (S_1 + S_2 + S_3 + S_4)$

Extraction of X and Y coordinates from 4-Quadrant photodetector

OP-AMP circuit (transimpedance conversion of photocurrents and voltage sum/subtraction) to achieve the coordinate signals $S_{\chi} e S_{\gamma}$ **Spatial localization accuracy on the 4-Q depends on** P_{spot} **and** w **and spot shape, and** gap **and** r_{PD} : $\sigma_{X,Y}$ =10%-3%· r_{PD} Dependence of the coordinate signal S_X (S_Y) from the coordinate value X(Y) of the laser (or light) spot. For small spot ($w_0 << r_{\rm PD}$) response is squared with a small dead-zone at X=0(or Y=0). For larger spot the signal is "linearized" (in the central region) 17/38

Angular position sensor with 4-Quadrant photodiode

A position sensitive detector (4-Q, PSD, reticule) other than indicator of X and Y coordinates can be used to detect angular (θ_X and θ_Y) coordinates of the arriving beam

If the sensor is placed in the focal plane of a lens, **angular coordinate** is transformed into a corresponding deflection coordinate : $X = F \theta_X$ and $Y = F \theta_Y$

PSD photodiode (scheme and principle)

High **linearity** over the whole measurement range

Position Sensitive Detector is a normal PIN photodiode with thin p and n regions lightly doped (to enhance the series resistance of p and n volumes at the border of the depletion region) Incident spot of (X, Y)coordinate produces a photocurrent flowing from electrodes Y (cathode) to electrodes X (anode)

The current, passing trough regions p and n of high resistivity is divided with the partitions rule between two resistors.

The difference in the detected currents on the same electrode pairs (X or Y) gives the coordinate $(X \circ Y)$ 19/38

 ρ^* is the resistivity per unit length (in the slightly doped p region) we have **current partitioning** toward the two anodes A_1 , A_2 such as $I_{ph}=I_l+I_r$ with voltage $\frac{R_l R_r}{R_l + R_r} I_{ph} = R_l I_l = R_r I_r$

 $(I_r) = \frac{K_l}{R_l + R} I_{ph} =$

20/38

- PSD photodiode (working equations)

$$I_{x1} = I_l = \left(1 - \frac{x}{L}\right)I_{ph}$$
 $I_{x2} = I_r = \frac{x}{L}I_{ph}$
Similarly
 $I_{y1} = \left(1 - \frac{y}{L}\right)I_{ph}$ $I_{y2} = -\frac{y}{L}I_{ph}$

From the OP-AMP circuit we obtain

$$S_{X} = -R(I_{x1} - I_{x2}) = \begin{pmatrix} \frac{2x}{L} - 1 \end{pmatrix} RI_{ph} \propto X$$

$$S_{Y} = -R(I_{y2} - I_{y1}) = \begin{pmatrix} \frac{2y}{L} - 1 \end{pmatrix} RI_{ph} \propto Y$$

$$Varying with P$$

(and also with ρ !)

The output becomes independent from photocurrent I_{ph} (and P) **dividing for the sum signal** $\Sigma_{X/Y} = R(I_{x/y1} + I_{x/y2}) = RI_{ph}$ \Rightarrow measurement independent from P and $\approx responsivity$ (ρ) _{21/38}

Position Sensing with Reticules

Transformation from angular into spatial coordinate (lens focal plane) and measurement of spatial coordinate (*x*,*y*) from polar coordinates (ρ , $\theta = \Psi_0$)

Position sensing by a rotating reticule: light from a bright spot at the angle θ is imaged by the objective lens on the focal plane, where it is chopped by the reticule placed in front of the photodetector. By comparing the **phase-shift** of the square waveform from the photodetector and of a reference, the **angular position** $\underline{\psi}_0$ of the source is determined. The **<u>amplitude</u>** of the signal, V_{signal} , carries information on the **polar** coordinate *p*, similar to that of the quadrant PD.

Position Sensing with Reticules

The rising-sun (top) reticule provides a better suppression to extended sources of **disturbance** and digital counting of the angle ψ_0 .

The digital readout reticule (bottom) supplies both ρ and ψ coordinates.

Diapositiva 23

qui termina la 7a lezione dell'AA 2005/2006 Cesare Svelto; 05/04/2006 CS10

Measurements wires diameters from diffracted light analysis

CS11

The distance between zeroes (or peaks) on the detector is proportional to 1/D 24/38

Diapositiva 24

CS11 qui inizia la 8a lezione dell'AA 2005/2006 Cesare Svelto; 05/04/2006

Instrument for wire diameter measurement

Commercial instruments for wire diameter measurement, measurable diameters can range from 10 μ m (±1% acc.) up to more than 2 mm (±5% acc.)

The wire is passed trough an "U" aperture: direct monitoring during production, with online correction during the spinning process

Particle diameter measurement

The diameter analyzer measures diffracted light from suspended particles within a fluid. At the cell exit a lens converts angular diffraction profile into a corresponding spatial profile in the focal plane $(\theta \rightarrow R)$. A photodetector (scanned PD or CCD) measures I(R): the distribution of particle diameters, p(D), is calculated inverting

 $I(R) = I_0 \quad \int_{0-\infty} \operatorname{somb}^2[(D/\lambda)(R/F)] \cdot p(D) \, \mathrm{d}D$ with (R/F) = tan $\theta \cong \theta$ $\operatorname{somb}(x)=2[J_1(\pi x)]/\pi x$ 26/38

Methods to solve for p(D) from measured data $I(\theta)$

- Analytical Inversion

 $p(D) = -[(4\pi/D)^2/\lambda] \int_{\theta=0-\infty} K(\pi D \sin\theta/\lambda) d[\theta^3 I(\pi D \sin\theta/\lambda)] / I_0$ a theoretically nice result but impractical to be used.

- Least Square Method

Using a discrete approximation for $p(D)=p_k$ and $I(\theta)=I_n$ and letting $S_{nk} = \text{somb}^2[(D_k/\lambda)\sin\theta_n]$, we get a set of equations:

 $I_n = \Sigma_{k=1..K} S_{nk} p_k$ (n=1..N)

N is the number of angular measurements performed on the intensity, K is the number of unknown diameters.We start with K<N and close the set adding N-K equations from the LSM condition, sought from:

 $\varepsilon^2 = \Sigma_{n=1..N} \left[I_n - \Sigma_{k=1..K} S_{nk} p_k \right]^2 = \min$

(27/38

Taking the derivative respect p_k 's and equating to zero gives:

$$0 = \partial(\varepsilon^2) / \partial p_k = \sum_{n=1..N} 2[I_n - \sum_{k=1..K} S_{nk} p_k](-S_{nk})$$

and rearranging we get

$$J_h = \Sigma_{k=1..K} Z_{hk} p_k \qquad (h=1..K)$$

where we have let $J_h = \sum_{n=1..N} I_n S_{nh}$ and $Z_{nk} = \sum_{n=1..N} S_{nk}^2$ Now, the number of equations is equal to the number of unknown and we can solve for p_k with standard algebra. Usually, the range of diameters of interest may be large (for p(D)(arb. unit) example, two decades from 2 to 200µm) but the number of affordable diameter is modest 100 200 20 50 10 (e.g. K=6-9) at $\pm 10\%$ accuracy.

D (μm)

-*Iterative Methods*. They are based on the following approach: if the set of diameter p_k is correct, it should give the measured distribution $I_{n calc} = \sum_{k} C_{nk} p_{k}$. If these values $I_{n calc}$ differ from experimental values $I_{k meas}$, then we may expect to approach the solution if we multiply p_k by $I_{k,meas}/I_{k,calc}$. Using $p_{k+1} = I_{k,meas}/I_{k,calc}$ p_k and repeating an adequate number of times, p_k should converge to the correct solution (there is no clear sign of convergence, however) A refinement of Chahine's method consists in weighting the iteration by the normalized kernel, $S_{nk}/\Sigma_{n=1}S_{nk}$, using $p_{k+1} = (S_{nk}/\Sigma_{n=1..N}S_{nk})(I_{k,meas}/I_{k,calc}) p_k$ In this way, spurious peaks found in Chahine's method are suppressed, and resolution and dynamic range are improved

Common errors in the PSM: *finite size* of detector, *beam waist* effects, *lens vignetting*, and *undiffracted beam* (θ =0), important for small θ (large D). Better than a stop to block it out, we can use the filtering known as reverse Fourier-transform illumination, with a convergent beam to illuminate the cell. Diffracted rays (dotted lines) are focused on axis, and pass through the pinhole, whereas undiffracted rays arrive out-of-axis and are blocked.

• In the **Rayleigh** regime $r << \lambda$, the scattering is nearly isotropic in angle and the extinction factor $Q_{\rm ext}$ varies as $(r/\lambda)^4$. • When r increases up to about $r \approx \lambda$, (intermediate regime) the scattering function $f(\theta)$ is mainly forward and the extinction factor increases up to $Q_{\text{ext}} \approx 2-4$. • For $r >> \lambda$ we enter in the **Mie** regime, extinction Q_{ext} is nearly constant (in λ) at ≈ 2 and $f(\theta)$ is strongly peaked forward

 Q_{ext} tells how much the light *extinction cross section* (due to *scattering*) is larger than the **physical area** (πr^2) of the diffusing **particle** 33/38

• Another method is **SEAS** (*Spectral Extinction Aerosol Sizing*). It is based on measuring light scattered from the cell at a fixed angle, while scanning λ instead of θ . By varying the ratio D/ λ , the extinction factor $Q_{ext}(D,\lambda,n)$ varies and the scattered power too, according to:

 $I(\lambda, 45^{\circ}) = f(45^{\circ}) (\Delta\Omega/4\pi) I_0 \int_{0-\infty} Q_{ext}(D, \lambda, n) p(D) dD$

where $f(\theta)$ =scattering function, Q_{ext} =extinction factor. The equation is the counterpart of that for extinction-related measurement, and all the methods of inversion of the Fredholm's integral can now be applied on D_k and λ_n . With **SEAS we may to go down to 0.02–0.1µm** as the minimum measurable size, overlapping with the LAELS low-range ($\approx 2-5 \mu m$).

• A last method is the *Dynamical Scattering Size Analyzer* (DSSA), useful for very small (1..100-nm) particles. Based on the frequency shift due to Doppler effect $(\underline{k}_0 - \underline{k}_i) \cdot \underline{v}$, it is measured by the time-domain autocorrelation function $C(\tau)=(1/T)\int_{0-T}i(t)i(t+\tau)dt$ which depends from the diffusion constant δ of particles according to: $C(\tau)=C_0 \exp{-\delta(k_0-k_i)^2\tau}$.

from 0.05 to 2500 µm [by CILAS, France]

(38/38