

The next slides material is taken from

- AGILENT "Spectrum Analysis Basics"
- TEKTRONIX' "Fundamentals of Real-Time Spectrum Analysis"
- ROHDE&SCHWARZ "Key points of real time"

Overview What is Spectrum Analysis?

Overview Types of Tests Made

Overview Different Types of Analyzers

Copyright 2000

Overview Different Types of Analyzers

Instrument Screen

Theory of Operation Spectrum Analyzer Block Diagram

Copyright 2000

Copyright 2000

Frequency Scan

Signal measurement

When a narrowband signal runs beneath the filter, the measured spectrum draws the filter shape (it is a mathematical convolution)

Specifications Resolution: Resolution Bandwidth

Specifications

Resolution: Resolution Bandwidth

Copyright 2000

Screen example

Figure 2-7. Two equal-amplitude sinusoids separated by the 3 dB BW of the selected IF filter can be resolved

Screen example

Figure 2-10. The 3 kHz filter (top trace) does not resolve smaller signal; reducing the resolution bandwidth to 1 kHz (bottom trace) does

Specifications Resolution: RBW Type and Selectivity

Filter Selectivity

Figure 2-9. Bandwidth selectivity, ratio of 60 dB to 3 dB bandwidths

Specifications Resolution: RBW Type and Selectivity

Spectrum Analyzer Basics

Copyright 2000

Super-heterodyne detection

Specifications

Resolution: Digital Resolution Bandwidths

RES BW 100 Hz

SPAN 3 kHz

Theory of Operation Video Filter \bowtie **VIDEO FILTER**

Theory of Operation Other Components

Theory of Operation How it all works together

Copyright 2000

Swept Spectrum Analyzer: Measurement Time

The rise time of a filter (low-pass, but also band-pass) is inversely proportional to its bandwidth, and if we include a constant of proportionality, *k*, then:

Rise time = *T* = *k*/*RBW*

The value of *k* is in the 2 to 3 range for the synchronously-tuned, near-Gaussian filters used in many analyzers.

The number *N* of "equivalent points" on a screen is given by

N = Span / RBW

In conclusion, the minimum sweep time for a correct measurement is

$$ST = N \times T \approx \frac{3Span}{RBW^2}$$

Specifications

Resolution: RBW Determines Measurement Time

Penalty For Sweeping Too Fast Is An Uncalibrated Display

Specifications Sensitivity/DANL

A Spectrum Analyzer Generates and Amplifies Noise Just Like Any Active Circuit

Copyright 2000

Sensitivity/DANL

Effective Level of Displayed Noise is a Function of RF Input Attenuation

Signal-To-Noise Ratio Decreases as RF Input Attenuation is Increased

Attenuation - Noise Level (DANL)

Figure 5-1. Reference level remains constant when changing input attenuation

Noise Figure and DANL

The spectral density of thermal noise is equal to:

 $p_T = kT \cong 4 \times 10^{-21} \text{ W/Hz} \cong -174 \text{ dBm/Hz}$

At ambient temperature, and $k = 1.38 \times 10^{-23} \left[\frac{W}{Hz \text{ K}} = \frac{J}{\text{K}} \right]$ is the Boltzmann

Noise Figure is defined as the ratio between the instrument noise level and the thermal noise:

NF = *DANL*[measured noise in dBm] – 10 log[*kT* × *RBW*/(1 mW)]=

= DANL[measured noise in dBm] – 10 log(RBW/1 Hz) – (-174 dBm/Hz)

(in the approximation of equivalent-noise-bandwidth $\cong RBW$)

Noise figure is independent of IF-filter bandwidth, while the displayed averaged noise level (DANL) on the analyzer changes with bandwidth.

A typical value for NF is 20-24 dB

Specifications Sensitivity/DANL: IF Filter (RBW)

Decreased BW = Decreased Noise

Copyright 2000

RBW – Noise Level (DANL)

Figure 5-2. Displayed noise level changes as $10 \log(BW_2/BW_1)$
Specifications Sensitivity/DANL: VBW

Specifications Sensitivity/DANL

For Best Sensitivity Use:

Narrowest Resolution BW

Minimum RF Input Attenuation

 Sufficient Video Filtering (Video BW < .01 Res BW)

Specifications Accuracy

Accuracy: Frequency Readout Accuracy

Typical datasheet specification:

Spans < 2 MHz: + (freq. readout x freq. ref. accuracy + 1% of frequency span + 15% of resolution bandwidth + 10 Hz "residual error")

Accuracy: Frequency Readout Accuracy Example

Single Marker Example:

2 GHz 400 kHz span 3 kHz RBW

Calculation:

 $(2x10^{9} Hz) x (1.3x10^{-7}/yr.ref.error) = 260 Hz$ 1% of 400 kHz span = 4000 Hz 15% of 3 kHz RBW = 450 Hz 10 Hz residual error = 10 Hz Total = ± 4720 Hz

Accuracy: Relative Amplitude Accuracy

- Display fidelity
- Frequency response
- RF Input attenuator
- Reference level
- **Resolution bandwidth**
- Display scaling

Accuracy: Relative Amplitude Accuracy - Freq. Response

Specification: ± 1 dB

Copyright 2000

Spectrum Analyzer Basics

Accuracy: Relative Amplitude Accuracy

- **RF Input attenuator**
- Reference level
- Resolution bandwidth
- Display scaling

Accuracy: Absolute Amplitude Accuracy

Absolute Amplitude in dBm

Calibrator accuracy

Frequency response

Reference level uncertainty

Specifications Resolution

Selectivity

Noise Sidebands

Specifications Resolution: Residual FM

Residual FM "Smears" the Signal

Resolution: Noise Sidebands

Noise Sidebands can prevent resolution of unequal signals

Mixers Generate Distortion

Most Influential Distortion is the Second and Third Order

Two-Tone Intermod

Harmonic Distortion

Specifications Distortion

Specifications Distortion

Relative Amplitude Distortion Changes with Input Power Level

Copyright 2000

Spectrum Analyzer Basics

Specifications Distortion

Dynamic Range

Signal-to-Noise Ratio Can Be Graphed

Specifications Dynamic Range

Dynamic Range Can Be Presented Graphically

Copyright 2000

Specifications Dynamic Range

Dynamic Range for Spur Search Depends on Closeness to Carrier

Specifications Dynamic Range

Actual Dynamic Range is the Minimum of:

Maximum dynamic range calculation

Noise sidebands at the offset frequency

Copyright 2000

Spectrum Analyzer Basics

Dynamic Range

SPAN ZERO Modulation Measurements: Time Domain

It was mentioned briefly that although a spectrum analyzer is primarily used to view signals in the frequency domain, it is also possible to use the spectrum analyzer to look at the time domain. This is done with a feature called zero-span. This is useful for determining modulation type or for demodulation.

The spectrum analyzer is set for a frequency span of zero (hence the term zero-span) with some nonzero sweep time. The center frequency is set to the carrier frequency and the resolution bandwidth must be set large enough to allow the modulation sidebands to be included in the measurement . The analyzer will plot the amplitude of the signal versus time, within the limitations of its detector and video and RBWs.

Specifications Frequency Range

Higher Bands

LO Harmonics

Noise level for higher bands

来 A	gilent			Freq/Channel
Ref 0 #Peak	dBm	Atten 10 dB		Center Freq 13.2550000 GHz
Log 10 dB/			AC Coupled	Start Freq 10.0000000 MHz
				Stop Freq 26.5000000 GHz
LgAv				CF Step 2.64900000 GHz <u>Auto</u> Man
W1 S S3 F	2 Communited and and and and and and and and and an	and and the second of the seco	An some for the service and and the	Freq Offset 0.00000000 Hz
€(f): FTun Swp				Signal Track ^{On <u>Off</u>}
Start Res E	10 MHz 3W 3 MHz	VBW 3 MHz S	Stop 26.50 GHz weep 66.24 ms (601 pts)	

Figure 7-9. Rise in noise floor indicates changes in sensitivity with changes in LO harmonic used

External Mixer

Table 7-1. Harmonic mixing modes used by ESA-E and PSA Series with external mixers

Band	Harmonic mixing mode (N ^a)	
	Preselected	Unpreselected
K (18.0 to 26.5 GHz)	n/a	6-
A (26.5 to 40.0 GHz)	8+	8-
Q (33.0 to 50.0 GHz)	10+	10-
U (40.0 to 60.0 GHz)	10+	10-
V (50.0 to 75.0 GHz)	14+	14-
E (60.0 to 90.0 GHz)	n/a	16-
W (75.0 to 110.0 GHz)	n/a	18-
F (90.0 to 140.0 GHz)	n/a	20-
D (110.0 to 170.0 GHz)	n/a	24-
G (140.0 to 220.0 GHz)	n/a	32-
Y (170.0 to 260.0 GHz)	n/a	38-
J (220.0 to 325.0 GHz)	n/a	46-

Image shift

7

Figure 7-15. Which ones are the real signals?

Image suppress

Modern Spectrum Analyzer: Digital Receiver

Modern SA block diagram

Real-time Architecture

Real-Time

I A Real-Time spectrum analyzer shows the spectrum without any loss of data:

Real-Time

Measurement Time

The system is no-more swept: the local oscillator is at a fixed frequency and the frequency measurement is made by an FFT technique.

If *SPAN < RTB* (real time bandwidth), the measurement time is limited by the frequency resolution:

Acquisition time = *T* = 1/*RBW*

We have to consider also the time needed for the FFT elaboration, but it is often negligible (and some FFTs are made in parallel)

If *SPAN* > *RTB*, the local oscillator is moved for discrete steps, and the screen spectrum is a collage of some FFT results (no more phase coherence in the whole spectrum)

Screen time = SPAN / RTB × (1 / RBW)

For low RBW values it is much faster than swept analyzer (ST \cong 3SPAN / RTB²)

New measurement possibilities

Figure 8. Analysis of phase-locked loop. Spectrogram (right display) captures PLL response as it settles over time (top to bottom). Vertical axis is Time, horizontal axis is Frequency, and Power Density is represented by color.

Typical Applications Find Hidden Signals

