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Measurement of Electromagnetic 

quantities 
In DC: 

V, I, R, P, E, H

Low frequency, AC, with an adequate equivalent circuit:

V, I, Z, P, E, H

Radio-frequency and microwaves: sometimes V, I and Z could 

exist, but not always. 

P, E, H  always exist

But we can define reflection and transmission coefficient

T,  always measureable 



Maxwell’s equations
Based on observation -- not derived
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Induction 

Charges give 

electric field

No magnetic

monopoles

Currents give

magnetic field

Loop

voltage Flux change

Electric

field flux Charge 

No net magnetic flux

through closed surface

Current 

Changing 

electric field

Capacitor Q = CV

Q =  A E = V ( A /d)

C =  A /d

I = dQ/dt =  A dE/dt

I 
a

B



Electromagnetic field in vacuum
No sources of electric field, no currents
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E = E0 cos(kx - wt)

B = B0 cos(kx - wt)
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Maxwell’s eqns -- differential form

Propagating waves

Light speed: c = 1/()  = w/k

B = E / c



Electromagnetic Waves

When an electric charge vibrates, the electric field 

around it changes creating a changing magnetic field.

The magnetic and electric fields create each other again 

and again.



An EM wave travels in all directions.  The figure only 

shows a wave traveling in one direction. 

The electric and magnetic fields vibrate at right angles to 

the direction the wave travels so it is a transverse wave.

Electromagnetic Waves
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Electromagnetic Field Propagation

In a guided electromagnetic wave (propagating through Z) the transverse fields 

(one propagation mode) can be written as 

the first terms are complex numbers, named voltage and current “generalized”, with 

dimensions of voltage and current

the vectors describe the field distribution in the XY plane (transversal) and do not depend on Z

There is ambiguity in the definition, but it can be fixed by two normalization:

Power Impedance

The goal is to obtain v = real voltage i = real current, when possible

),()( yxezvEt
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Electromagnetic Field Propagation

Power normalization - Poynting theorem:

Impedance normalization

Each mode-field is due to the sum of the propagating wave and the anti-

propagating wave (same spatial distribution, different orientation of E and H)

v = v+ + v-

i = i+ - i-

If we consider only a propagating wave, the electric and magnetic field are 

related by the characteristic impedance Z0
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Transmission line Zo

Zo determines relationship between voltage and current waves

Zo is a function of physical dimensions and r

Zo is usually a real impedance (e.g. 50 or 75 ohms)

5
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Pseudo-waves

We can introduce two complex numbers for describing the electromagnetic 

wave: the propagating waves a and b
Definitions:
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Pseudo-waves

The absolute values of a and b indicate “the amplitude”:

The phases of a and b are exactly the phases of the electric field E

Their ratio indicates the reflection coefficient:
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Reflection Coefficient

The characteristic impedance Z0 is

The Reflection coefficient is 

The “real” impedance Z is 

where V and I are the “real” voltage and current

On a real conductor V = v+ + v- I = i+ - i-

I

V
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Transmission Line Basics

Low frequencies

 wavelengths >> wire length

 current (I) travels down wires easily for efficient power 

transmission

 measured voltage and current not dependent on position 

along wire

High frequencies

 wavelength  or <<  length of transmission medium

 need transmission lines for efficient power transmission

 matching to characteristic impedance (Zo) is very important 

for low reflection and maximum power transfer

 measured envelope voltage dependent on position along line

9



Transmission Line Terminated with Zo

For reflection, a transmission line 

terminated in Zo behaves like an infinitely 

long transmission line

Zs = Zo

Zo

Vrefl = 0! (all the incident power

is absorbed in the load)

Vinc

Zo = characteristic impedance  

of transmission line

10



Transmission Line Terminated 

with Short, Open

Zs = Zo

Vrefl

Vinc

For reflection, a transmission line terminated in a 

short or open reflects all power back to source

In-phase (0o) for open, 

out-of-phase (180o) for short



Transmission Line Terminated with 25 W

Vrefl

Standing wave pattern does not go to zero 

as with short or open

Zs = Zo

ZL = 25 W

Vinc
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Network described by a Matrix….

Impedance Matrix:

It is easy that some terms do not exists… also v and I could not exist..

It is the same for the admittance matrix…

New definition: the SCATTERING MATRIX  S
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Scattering Matrix

a =  input waves

b =  output waves

Matched port
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Scattering parameters
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 relatively easy to obtain at high frequencies

 measure voltage traveling waves with a vector network analyzer

 don't need shorts/opens which can cause active devices to oscillate 

or self-destruct

 relate to familiar measurements (gain, loss, reflection coefficient ...)

 can cascade S-parameters of multiple devices to predict system 

performance

 can compute H, Y, or Z parameters from S-parameters if desired

 can easily import and use S-parameter files in our electronic-

simulation tools
Incident TransmittedS21

S11
Reflected S22

Reflected

Transmitted Incident

b1

a1
b2

a2
S12

DUT

b1 = S11a1 + S12 a2

b2 = S21 a1 + S22 a2

Port 1 Port 2



S 11 =
Reflected

Incident
=

b1

a 1 a2 = 0

S 21 =
Transmitted

Incident
=

b
2

a 1 a2 = 0

S 22 =
Reflected

Incident
=

b2

a 2 a1 = 0

S 12 =
Transmitted

Incident
=

b
1

a 2 a1 = 0

Incident TransmittedS 21

S 11
Reflected

b 1

a 1

b 2

Z 0

Load

a2 = 0

DUTForward

IncidentTransmitted S 12

S 22

Reflected

b 2

a2

b

a1 = 0

DUTZ 0

Load
Reverse

1

Scattering parameters: two-port



Equating S-Parameters with 

Common Measurement Terms

S11 = forward reflection coefficient (input match)

S22 = reverse reflection coefficient (output match)

S21 = forward transmission coefficient (gain or loss)

S12 = reverse transmission coefficient (isolation)

S-parameters are inherently complex, linear quantities 

we often express them in a log-magnitude format



High-Frequency Device Characterization

Transmitted

Incident

TRANSMISSION

Gain / Loss

S-Parameters

S21, S12

Group

Delay

Transmission

Coefficient

Insertion  

Phase

Reflected

Incident

REFLECTION

SWR

S-Parameters
S11, S22 Reflection

Coefficient

Impedance, 

Admittance 

R+jX, 

G+jB 

Return
Loss

, 
T,t

Incident

Reflected

Transmitted
R

B

A

A

R
=

B

R
=
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Propagation

A wave is described as

The wavefront  = 0 propagates in the versus depending on the sign

propagates towards (-z)

propagates towards (+z)

Time period Spatial period 

In complex notation (the time dependence is implicit):
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Scattering matrix of a transmission line

Transmission line with length L LOSSLESS

a1 b2

a2b1

z1 z2

L=z2-z1
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Loss and Reflection Coefficient

Transmission line with length L WITH LOSS
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Reflection Parameters

 dB

No reflection

(ZL = Zo)



RL

VSWR

0 1

Full reflection

(ZL = open, short)

0 dB

1 

=
ZL  ZO

ZL + OZ

Reflection 

Coefficient
=

Vreflected

Vincident

=  

= Return loss = -20 log(),

Voltage Standing Wave Ratio (VSWR)
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Transmission Parameters

V
Transmitted

V
Incident

Transmission Coefficient   = T =
VTransmitted

V Incident

= t

DUT

Gain  (dB)   =  20 Log 

V
Trans      

V Inc      

= 20 log t

Insertion Loss (dB)   =   - 20 Log 

V
Trans      

V Inc      

=   - 20 log t
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Example of scattering matrix: 

RF amplifier
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Example of scattering matrix: 

RF amplifier
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S-parameters of a series impedance

Find the S-parameters of a series impedance Z connected between

the two ports

We can apply the definitions of the pseudo-waves, and solve the simple 

circuit.

matched source matched load

Z
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S-parameters of a series impedance
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S-parameters of a series impedance
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It is possible to repeat the calculation feeding the signal to the port 2, and 

closing the port 1. For symmetry we get:
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S-parameters of a series impedance
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Scattering matrix properties: 

LOSSLESS
If the network is lossless, the input power is equal to the output power

Lets substitute the matrix formalism in the first balancing equation
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Scattering matrix properties: 

LOSSLESS
Lets substitute the matrix formalism in the first balancing equation

The matrix with this property is named unitary matrix
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Scattering matrix properties: 

LOSSLESS
The scattering matrix of a lossless network is UNITARY:

The network described by a unitary matrix is lossless (the output power is 

equal to the input power)

Example: 2x2 unitary matrix

No loss for the power entering the port 1

No loss for the power entering the port 2

 ][][][ * ISS   1]det[ S
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Scattering matrix properties: 

RECIPROCITY
The network reciprocity is a strong physical property, always satisfied if 

there are no anisotropic elements

For Impedance and admittance matrix the property is: Zik = Zki ; Yik = Yki

Given the characteristic impedance         for port I, the reciprocity condition 

for a scattering matrix is 

If the access guide have the same characteristic impedance, the condition 

becomes

The scattering matrix of a reciprocal network is symmetric.

Z S S Zi ik ki k0
1

0
1   

iZ0

kiik SS 
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Reflection Coefficient 

Let’s consider a load L, with reflection coefficient 

What is the reflection coefficient value,         , seen at the input of the 

network shown in figure?

The reflection coefficient changes  following a bilinear relation
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Properties of a bilinear relation

Consider two complex variables w and z, linked by a general bilinear 

relation

We can write the relation as

If we consider two new variables:

The relation becomes 

Therefore, a bilinear relation is just an hyperbolic relation after translation 

and zoom
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Properties of a bilinear relation

If z portrays a circumference, also Z will portray a circumference (the 

transform is only a zoom followed by a translation), for example of radius 

R and center S. This condition is expressed by:

By substituting we get:

This relation still describes a circumference, with a new center S’ and 

radius R’

As conclusion, if Z follows a circumference, also W follows a 

circumference in the complex plane
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Example of calculus with complex 

numbers: varying the  module
Consider a reflection coefficient        varying from

Lets calculate the evolution of

After the network S

The reflection coefficient becomes 
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Example of calculus with complex 

numbers: varying the  module
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Example of calculus with complex 

numbers: varying the  module
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Example of calculus with complex 

numbers: varying the  phase
Consider a reflection coefficient with            and phase varying 

from 0 to -2

Lets calculate the evolution of

After the network S

The reflection coefficient becomes 
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Example of calculus with complex 

numbers: varying the  phase
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Exercise-1

• Calculate the scattering matrix of a transmission line perfectly 

matched, with length 21.5, and loss 0.1 dB.

The line is matched, therefore we have 0 on the main diagonal.

Certainly the line is reciprocal, then the matrix is symmetric.

The 0.1 dB loss in linear corresponds to G=10-(0.1/20)= 0.988 

( 20 log10(G)= 0.1 ). 

The phase of the transmission terms is given by

Which corresponds to 180°

Resulting scattering matrix:
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Exercise-2

• Calculate the reflection coefficient at the input of the line, when the 

output is left open (considering no radiation).

open circuit

Let’s apply the formula for the propagation of the reflection coefficient, 

remembering that the reflection coefficient of an open circuit is:

1
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Signal Generator

• The output signal from a generator can be written as a sum of a 

generated wave     and a reflected wave (the generator could be not 

matched)

• is the generated wave, obtained on a matched load
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0b
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Matching Theorem: 3-port

It is not possible to realize a 3-port device without loss, reciprocal and 

completely matched.

Demonstration:

Consider a completely matched device

The condition of absence of loss is
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Matching Theorem: 3-port

There are only two possible solutions: or or

Counterclockwise CIRCULATOR 
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Matching Theorem: 3-port

Second possible solution: clockwise CIRCULATOR

The circulator is lossless, perfectly matched, but not reciprocal

The input power at one port goes out from the next port
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Matching Theorem: 4-port

Let consider a 4-port device reciprocal and without loss. If two port are 

matched and not coupled (there is no power transfer between them), the 

other two port are also matched and not coupled.

Demonstration:

Consider a reciprocal device (symmetric matrix), with two port matched 

and not coupled

The condition of absence of loss is

We use only the four equations given by the main diagonal of the identity 

matrix
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Matching Theorem: 4-port

We use only the four equations given by the main diagonal of the identity 

matrix

By adding the first two equation and the second two equation we get:

By subtracting the two equation we get

Demonstrated!
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IDEAL DIRECTIONAL COUPLER

The device that satisfies the 4-port matching theorem is the directional 

coupler. The ideal directional coupler is without loss, reciprocal, and two 

couple of port are not coupled. Considering a symmetric structure, the 

scattering matrix can be written as

The coupling coefficient is 

The transmission coefficient is 
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REAL DIRECTIONAL COUPLER

The coupling factor is 

K = 10 log10(Pin/ PC)= 20 log10│1 / S41│

It is typically the first feature of the coupler

The transmission loss is 

L = 10 log10 (Pin/ Pout ) = 20 log10│1 / S21│
It is typically the first feature of the coupler

The isolation is

I =  10 log10 (Pin/ P3 )= 20 log10│1 / S31│
It should be infinite in an ideal coupler

The directivity is

D(dB) = I(dB) - K(dB) - L(dB) = 20 log10│S21S32/S31│
It is the measurement of the ratio between the signals at port 3: the one reflected 

by a load with ||=1 placed at port 2 (desired), and the one coupled between port 

3 and 1 (undesired).
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a2b1

a3
b3 a4

b4

Pin Pout
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DIRECTIONAL COUPLER 

DIRECTIVITY


