

4-port Reflectometer

A reflectometer is a circuit for measuring the reflection coefficient of a load, in amplitude and phase.

Sends a small part of the incident signal to R

4-port Reflectometer

Ideal case:

- Infinite directivity $\left(S_{14}=S_{23}=0\right)$
- Perfect matching of the couplers $\left(S_{k k}=0 \quad k=1, \ldots 4\right)$
- Perfect matching of the detectors $\left(\Gamma_{3}=\Gamma_{4}=0\right)$

Reflectometer: ideal case

$$
b_{3}=S_{31} a_{1}=\left(S_{31} / S_{21}\right) b_{2}
$$

$$
b_{4}=S_{42} a_{2}
$$

$$
b_{4} / b_{3}=v_{4} / v_{3}=\left(S_{42} S_{21} / S_{31}\right) \Gamma_{L},
$$

$\Gamma_{L}=C v_{4} / v_{3} \quad C$ to be determined

There is need for 1 single measurement with a known load, for example a short circuit phase sensitive detection $\left.\left(\Gamma_{L}=-1\right)\right|_{\text {s.c. }}$

$$
C=-\left.\left(v_{3} / v_{4}\right)\right|_{\mathrm{s.c}}
$$

v_{3} and v_{4} measured by a phase sensitive detection, after heterodyne conversion

Reflectometer: real case

Real case:

- Finite directivity (S_{14} and $S_{23} \neq 0$)
- No matching of the couplers $\left(S_{k k} \neq 0 k=1, \ldots 4\right)$
- No matching of the detectors (Γ_{3} and $\Gamma_{4} \neq 0$)

- Errors in the detector (phase shift and attenuation)

8 unknowns and 6 equations, to find out $\quad \Gamma_{12}=a_{2} / b_{2}$

$$
\begin{aligned}
\left\{\begin{aligned}
b_{1}= & S_{11} a_{1}+S_{12} a_{2}+\ldots+S_{14} a_{4} \\
b_{2}= & S_{21} a_{1}+S_{22} a_{2}+\ldots+S_{24} a_{4} \\
& \ldots \\
b_{4}= & S_{41} a_{1}+S_{42} a_{2}+\ldots+S_{44} a_{4} \\
a_{3}= & \Gamma_{3} b_{3} \\
a_{4}= & \Gamma_{4} b_{4}
\end{aligned}\right.
\end{aligned}
$$

Reflectometer: real case

After substitution of the last two equations we get 6 unknowns ($a_{1}, a_{2}, b_{1}, b_{2}, b_{3}, b_{4}$) and 4 equations. Supposing that the determinant of the new system is $\neq 0$ (it depends on the reflectometer structure),
 again, by substitutions we get 4 unknowns and 2 equations (always linear)

$$
\begin{array}{ll}
b_{3}=\alpha_{3} a_{2}+\beta_{3} b_{2}=\left(\alpha_{3} \Gamma_{12}+\beta_{3}\right) b_{2} \\
b_{4}=\alpha_{4} a_{2}+\beta_{4} b_{2}=\left(\alpha_{4} \Gamma_{12}+\beta_{4}\right) b_{2} & \Gamma_{12}=a_{2} / b_{2}
\end{array}
$$

(structure close to be ideal

$$
\begin{gathered}
v_{3}=\sqrt{ } \mathrm{Z}_{0}\left(a_{3}+b_{3}\right)=\sqrt{ } \mathrm{Z}_{0}\left(\Gamma_{3}+1\right) b_{3}=\sqrt{ } \mathrm{Z}_{0}\left(\Gamma_{3}+1\right)\left(\alpha_{3} \Gamma_{l 2}+\beta_{3}\right) b_{2} \\
v_{4}=\sqrt{ } \mathrm{Z}_{0}\left(a_{4}+b_{4}\right)=\sqrt{ } \mathrm{Z}_{0}\left(\Gamma_{4}+1\right) b_{4}=\sqrt{ } \mathrm{Z}_{0}\left(\Gamma_{4}+1\right)\left(\alpha_{4} \Gamma_{l 2}+\beta_{4}\right) b_{2} \\
v_{4} / v_{3}=\left[\left(\Gamma_{4}+1\right) /\left(\Gamma_{3}+1\right)\right]\left(\alpha_{4} \Gamma_{l 2}+\beta_{4}\right) /\left(\alpha_{3} \Gamma_{l 2}+\beta_{3}\right)=A\left(\Gamma_{l 2}+B\right) /\left(\Gamma_{l 2}+C\right)
\end{gathered}
$$

Reflectometer: real case

$$
v_{4} / v_{3}=A\left(\Gamma_{12}+B\right) /\left(\Gamma_{12}+C\right)
$$

Even if the detectors have a different attenuation (and frequency response), the equation is still valid: there are 3 parameters to be determined.

Standard procedure:
Applying 3 known loads (typically short-circuit, open-circuit and matched load) and calculate the 3 coefficient for each frequency.

