## INSERTION LOSS

When considering RF attenuators, it is important to underline the difference between "attenuation" and "insertion loss".
The insertion loss $L_{I}$ of a device is the power loss due to the insertion of the device before the load. It could be induced by a real attenuation (a loss), but also by mismatch and resulting power reflection.
The value $L_{I}$ is given by the ration, in logarithmic units, between the received power in two conditions:

1) Direct connection between the load $L$ and the source $G$,
2) Insertion of the device ( $A$ in figure 1) between load and source.


Figure 1
With respect to figure 1 , the insertion loss $L_{I}$ is defined as:

$$
L_{I}=10 \log \left(\frac{P_{1}}{P_{2}}\right)
$$

When both load and source are matched, the insertion loss is equal to the attenuation coefficient $\alpha$ :

$$
\alpha=\left.L_{I}\right|_{\Gamma_{G}=\Gamma_{L}=0}
$$

The coefficient $\alpha$ is due to the sum of two contributions, the reflection one $\alpha_{R}$ (due to the attenuator mismatch) and the loss one $\alpha_{D}$. The definitions are:

$$
\begin{aligned}
& \alpha_{R}=10 \log \left(\frac{P_{I}}{P_{I}-P_{R}}\right) \\
& \alpha_{D}=10 \log \left(\frac{P_{I}-P_{R}}{P_{L}}\right) \\
& \alpha=\alpha_{R}+\alpha_{D}
\end{aligned}
$$

where $P_{I}, P_{R}, P_{L}$ are respectively the incident power, the power reflected by the attenuator and the power at the load (figure 2).


Figure 2

With respect to the attenuator scattering matrix, using the definition of figure 3, the attenuation parameters are given by:
$\alpha=10 \log \left(\frac{P_{I}}{P_{L}}\right)=10 \log \frac{1}{\left|S_{21}\right|^{2}} \quad \alpha_{D}=10 \log \frac{1-\left|S_{11}\right|^{2}}{\left|S_{21}\right|^{2}}$

$$
\alpha_{R}=10 \log \frac{1}{1-\left|S_{11}\right|^{2}}
$$

because the power involved are expressed as:
$P_{I}=\frac{\left|a_{1}\right|^{2}}{2}$
$P_{L}=\frac{\left|b_{2}\right|^{2}}{2}$
$P_{R}=\frac{\left|b_{1}\right|^{2}}{2}$


Figure 3

## MISMATCH ERROR

We want to evaluate the error on the insertion loss, induced by the mismatch of the attenuator ( $S_{11}, S_{22} \neq 0$ ) and, mostly, by the mismatch of the system ( $\Gamma_{G}, \Gamma_{L} \neq 0$ ).

First of all we calculate what happens without the attenuator (figure 4):


Figure 4

$$
\left\{\begin{array}{l}
a=e_{g}+\Gamma_{G} b \\
b=\Gamma_{L} a \\
P_{L}=\frac{|a|^{2}}{2}-\frac{|b|^{2}}{2}
\end{array}\right.
$$

By solving the equations we obtain:

$$
\begin{aligned}
& a=e_{g} \frac{1}{1-\Gamma_{G} \Gamma_{L}} \\
& P_{L}=\frac{|a|^{2}}{2}\left(1-\left|\Gamma_{L}\right|^{2}\right)
\end{aligned}
$$

Now we insert the attenuator and calculate the resulting power received by the load (as in figure 3). We have 4 equations: 1 at the source, 1 at the load, and 2 from the scattering matrix.


Lets find the value of $b_{2}$, in order to express the load power as a function of the scattering coefficients and of the reflection coefficients:

$$
\frac{S_{11} e_{G}+S_{12} \Gamma_{L} b_{2}}{1-\Gamma_{G} S_{11}}\left(-\Gamma_{G} S_{21}\right)=S_{21} e_{G}+\left(S_{22} \Gamma_{L}-1\right) b_{2}
$$

therefore:

$$
b_{2}=\frac{S_{11} e_{G} S_{21} \Gamma_{G}+S_{21} e_{G}\left(1-\Gamma_{G} S_{11}\right)}{-S_{21} \Gamma_{L} \Gamma_{G} S_{12}+\left(1-\Gamma_{L} S_{22}\right)\left(1-\Gamma_{G} S_{11}\right)}=\frac{e_{G} S_{21}}{\left(1-\Gamma_{L} S_{22}\right)\left(1-\Gamma_{G} S_{11}\right)-S_{12} S_{21} \Gamma_{G} \Gamma_{L}}
$$

In conclusion:

$$
P_{L, 2}=\frac{\left|e_{G}\right|^{2}}{2} \frac{\left|S_{21}\right|^{2}\left(1-\left|\Gamma_{L}\right|^{2}\right)}{\left|\left(1-\Gamma_{L} S_{22}\right)\left(1-\Gamma_{G} S_{11}\right)-S_{12} S_{21} \Gamma_{L} \Gamma_{G}\right|^{2}}
$$

The insertion loss is given by the ratio of the power values in the two situations:

$$
\begin{aligned}
& L_{I}=10 \log \frac{P_{L 1}}{P_{L 2}}=10 \log \frac{\left|\left(1-\Gamma_{L} S_{22}\right)\left(1-\Gamma_{G} S_{11}\right)-S_{12} S_{21} \Gamma_{L} \Gamma_{G}\right|^{2}}{\left|S_{21}\right|^{2}\left|1-\Gamma_{G} \Gamma_{L}\right|^{2}}= \\
& =10 \log \frac{1}{\left|S_{21}\right|^{2}}+10 \log \frac{\left|\left(1-\Gamma_{L} S_{22}\right)\left(1-\Gamma_{G} S_{11}\right)-S_{12} S_{21} \Gamma_{L} \Gamma_{G}\right|^{2}}{\left|1-\Gamma_{G} \Gamma_{L}\right|^{2}}
\end{aligned}
$$

The first term represents the attenuation coefficient, corresponding to the insertion loss when the system is matched ( $\Gamma_{\mathrm{G}}=\Gamma_{\mathrm{L}}=0$ ). We can define the mismatch error $M$ as:

$$
M=L_{I}-\alpha=10 \log \frac{\left|\left(1-\Gamma_{L} S_{22}\right)\left(1-\Gamma_{G} S_{11}\right)-S_{12} S_{21} \Gamma_{L} \Gamma_{G}\right|^{2}}{\left|1-\Gamma_{G} \Gamma_{L}\right|^{2}}
$$

Typically, the $M$ coefficient is plotted as a function of the standing wave ratio of the system (VSWR $=\frac{1+|\Gamma|}{1-|\Gamma|}$ ), see figure 5, under some simplifying assumptions:

- The plot represents the maximum error (that is, we consider the phases of the complex parameters such as to maximize the error);
- The attenuator is assumed symmetric ( $S_{11} \cong S_{22}$ );
- The system is assumed symmetric ( $\left.\Gamma_{G} \cong \Gamma_{L}\right)$;
- The plot is parametric with respect to the attenuator VSWR, with the assumption of loss > 20 dB .


Figure 5

