
CAMPIONAMENTO SCHEDE DAQ PROTOCOLLI

Campionamento ideale/reale

Il segnale campionato $v(t_k)=v(kT_c)=x_c(t)$ idealmente si ottiene prelevando i campioni in un tempo infinitesimo ma nella **realtà** occorre un **tempo finito** $(T_w\neq 0)$ per prelevare da v(t) il segnale campionato $v(t_k)$ e poi per quantizzarlo

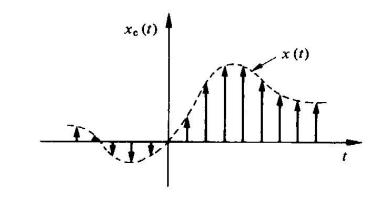
Segnale di ingresso e campionamento

Un segnale di tensione v(t)=x(t) è reale e continuo

Ipotizziamo di lavorare con uno spettro del segnale "limitato": trasformata X(f) t.c. $X(f)\equiv 0$ per $|f|>f_{\max}$

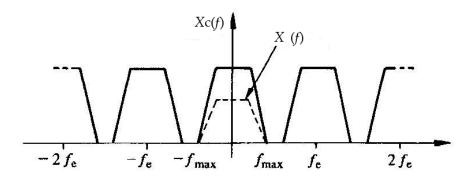
(se il segnale non ha banda limitata a $f_{\rm max}$ si può usare un filtro passa-basso)

In un campionamento ideale il segnale è moltiplicato per un treno (serie) di delta di Dirac $h(t) = \delta(t)$


In un campionamento reale il segnale è moltiplicato per un treno (serie) di rettangoli h(t)=rect $(t/T_{\rm w})$ in cui il singolo rettangolo ha durata finita $T_{\rm w}$

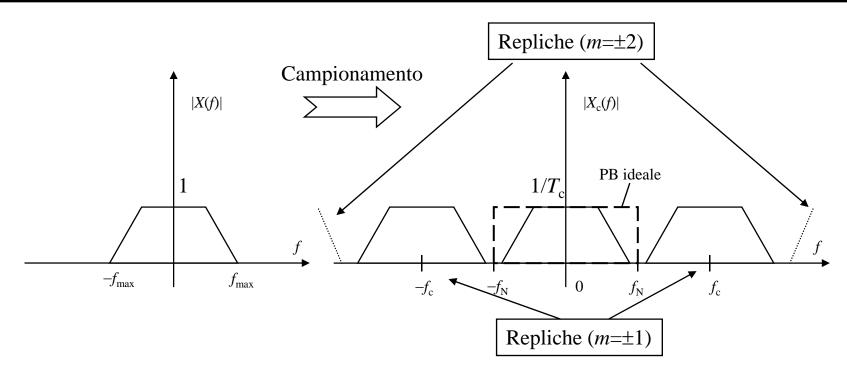
Campionamento ideale

 $T_{\rm c}$ e $f_{\rm c}$ sono periodo e frequenza di campionamento

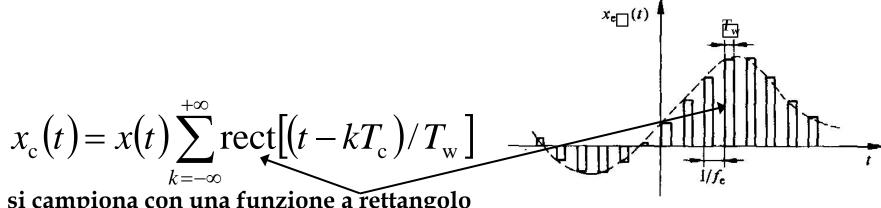

segnale campionato (dominio temporale)

$$x_{c}(t) = x(t) \sum_{k=-\infty}^{+\infty} \delta(t - kT_{c})$$

segnale campionato (dominio spettrale)

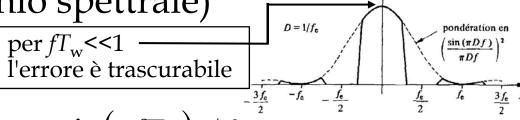

$$X_{c}(f) = f_{c} \sum_{m=-\infty}^{\infty} X(f - mf_{c})$$

Lo spettro del segnale campionato è periodico e contiene infinite repliche dello spettro del segnale, distanziate con un passo $f_{\rm c}$


Teorema di Shannon

Un filtro **passa-basso** (PB) **ideale** con frequenza di taglio pari alla **frequenza di Nyquist** $f_N = f_c/2$ permette di **ricostruire** il segnale originale, dal segnale campionato, se la massima frequenza f_{max} del segnale d'ingresso è tale che $f_{\text{max}} \leq f_N$

Se $f_{\text{max}} > f_{\text{N}}$ si avrà *aliasing* (equivocazione) sul segnale ricostruito


Campionamento reale

X(f)

si campiona con una funzione a rettangolo anziché con una δ di Dirac

segnale campionato (dominio spettrale)

 $X_{c}(f) = f_{c}T_{w} \frac{\sin(\pi f T_{w})}{(\pi f T_{w})} \sum_{m=-\infty}^{+\infty} X(f - m f_{c}) e^{-j\pi f T_{w}} \frac{\sin \pi T_{c}(f - m f_{c})}{\pi T_{c}(f - m f_{c})} e^{-j\pi f T_{c}}$

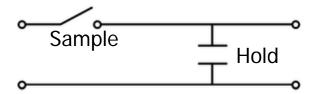
 $\Rightarrow T_{\rm w} << 1/f_{\rm max}$

distorsioni su

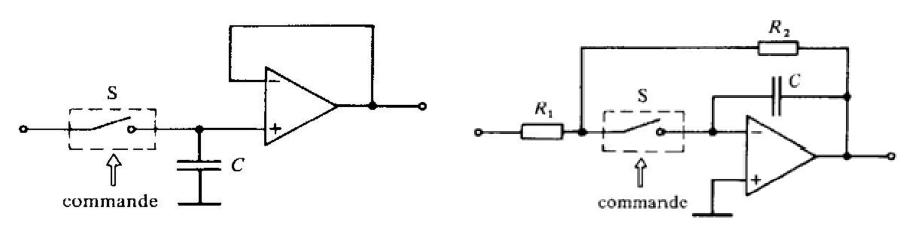
ampiezza e fase del

segnale ricostruito

09/03/2010


Soluzione Pb. campionamento reale

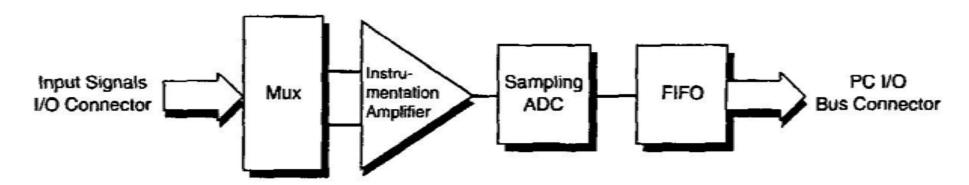
Per sistemi DAQ con **requisiti di accuratezza** elevati le **distorsioni** introdotte dal campionamento reale devono essere **calcolate e tenute in conto**


Non saranno accettabili distorsioni che producono errori sul segnale confrontabili con il limite di rumore imposto dal numero di bit equivalenti

In generale per ridurre gli effetti provocati dall'*aliasing* e dalla durata finita del campionamento si adottano frequenze di campionamento ben superiori al limite imposto dal teorema di Shannon (ad esempio f_c =10 $f_{c,min}$ =20 f_{max} =20 $f_{s,max}$) Naturalmente T_w < T_c e magari T_w << T_c \Rightarrow T_w <<1/f_max

Campionatore Sample&Hold (S/H)

A interruttore chiuso, la tensione campionata viene "memorizzata" su un **condensatore** (memoria analogica) che poi la mantiene quando l'interruttore è aperto



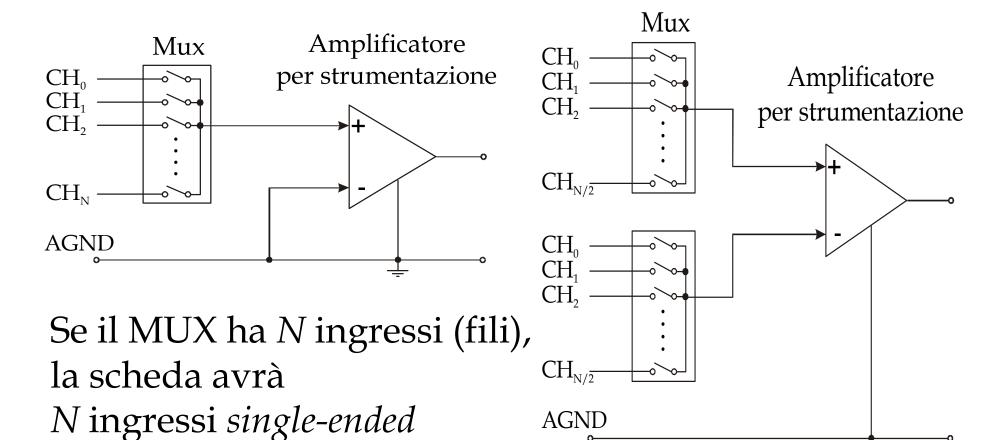
 $T_{\rm w} \approx \tau$ dipende dalla $R_{\rm s}$ $T_{\rm w} \approx \tau$ è dato da $R_2 C = {\rm cost.}$ **Pb.** non-idealità (**correnti di perdita**): dell'interruttore S o del condensatore C o dell'operazionale

SCHEDE DI ACQUISIZIONE DATI

(DAQ) Data AQuisition

Scheda di acquisizione dati (DAQ)

Multiplexer – permette di selezionare i diversi ingressi disponibili (di tipo *single-ended e di tipo* **differenziali**)


Amplificatore per strumentazione (WB, guadagno variabile) – consente di utilizzare la piena dinamica del convertitore (ADC)

Campionatore+ADC – converte la tensione in valore numerico

FIFO – consente di inviare sul bus dati del PC e/o direttamente in memoria RAM (DMA) del PC i dati acquisiti

Le schede dispongono anche di **uscite analogiche** (**DAC**), di **linee di I/O** Input/Output, e di sincronizzazioni analogiche e digitali (**timer** e **trigger**)

Ingressi single-ended o differenziali

Numero tipico dei canali analogici d'ingresso: 8-80 canali

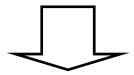
e N/2 ingressi differenziali

Frequenza di campionamento

Frequenza di campionamento – La massima frequenza a cui la DAQ può digitalizzare il segnale. La DAQ potrà digitalizzare il segnale anche a frequenze inferiori. Quando si effettua un campionamento multicanale (cioè su più ingressi), la massima frequenza campionabile sul singolo canale è pari a:

$$f_{sample, N_{\rm I} \text{ ingressi}} = \frac{f_{\rm max, ADC}}{N_{\rm I}}$$

Valori tipici per la frequenza di campionamento nel caso di schede *general purpose*:


$$10 \text{ kSa/s} < f_{sample} < 10 \text{ MSa/s}$$

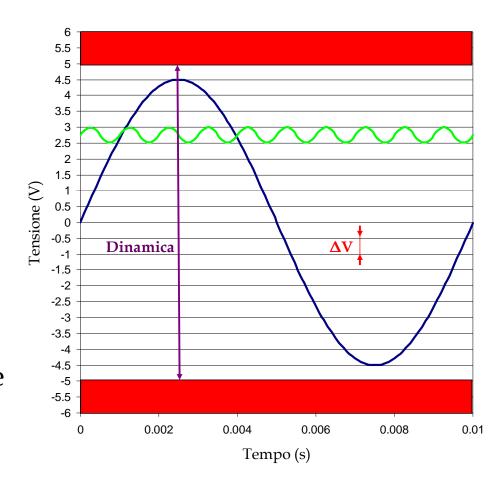
Dinamica ADC

Dinamica ADC: D_{ADC}

è fissa (non sempre adatta al segnale)

Si massimizza la risoluzione sul segnale amplificandolo

$$G = D_{ADC}/D_{segnale}$$


Guadagni tipici dell'amplificatore con ADC con dinamica ±5 V:

$$G=100 \ D_{\rm s}=\pm 50 \ {\rm mV}$$

$$G=10$$
 $D_{\rm s}=\pm 0.5 \text{ V}$

$$G=1$$
 $D_s=\pm 5$ V

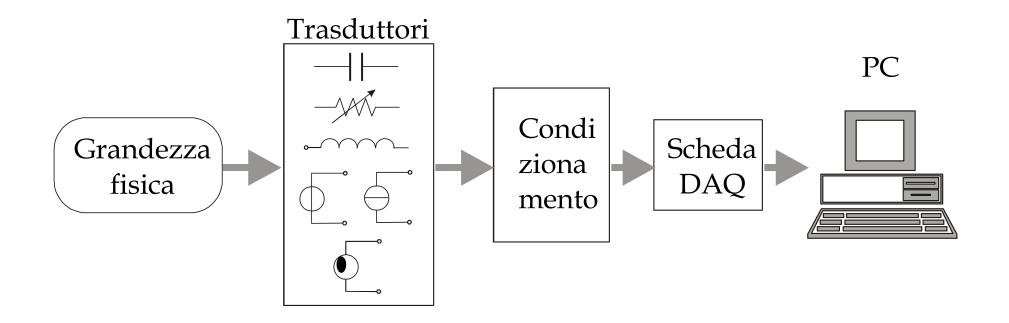
$$G=0.5$$
 $D_{\rm s}=\pm 10 \text{ V}$

$$\Delta V_{\rm s} = D_{\rm s}/2^n = (100 \,{\rm mV}, 1 \,{\rm V}, 10 \,{\rm V}, 20 \,{\rm V})/2^n$$

= 25 \text{\text{\$\mu}\$V, 250 \text{\$\mu\$V}, 2.5 \text{mV}, 5 \text{mV} @ n=12 \text{bit}

Risoluzione ADC

Risoluzione – Il numero di bit (n) che l'ADC usa per rappresentare il segnale analogico in ingresso. Maggiore è la risoluzione, maggiore è il numero di livelli in cui la dinamica (D_{ADC}) dell'ADC è divisa, ergo, la tensione minima rilevabile (ris. dim. ΔV) varia in funzione della dinamica del segnale d'ingresso e del guadagno dell'amplificatore. La minima tensione rilevabile per una DAQ ideale è la ris. dimensionale.

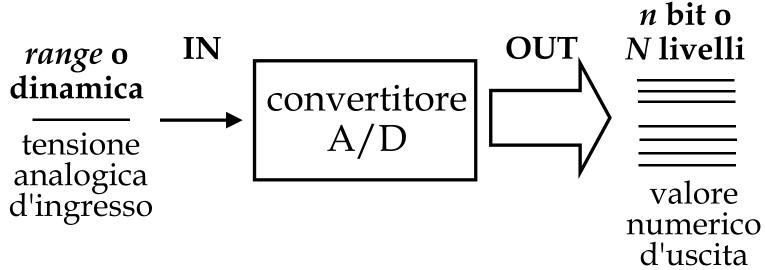

$$\Delta V = \frac{D_{\mathrm{ADC}}}{G \times 2^n}$$
 risoluzione dimensionale $\delta = \frac{1}{N} = \frac{1}{2^n}$ ris.

$$\delta = \frac{1}{N} = \frac{1}{2^n} \quad \text{ris. adim.}$$

Risoluzioni tipiche di una DAQ: 12-18 bit (δ = 0.25×10⁻³ - 4×10⁻⁶)

La risoluzione è solo una delle caratteristiche che descrivono l'accuratezza della DAQ. Rumore elettronico ed errori (di linearità, di offset, di guadagno) devono essere considerati per descrivere correttamente l'accuratezza dell'ADC.

Acquisizione dati dal mondo fisico



Fenomeno fisico → Trasduttore → Condizionamento →

Scheda DAQ → PC+DSP (elaborazione e visualizzazione)

ACQUISIZIONE e ANALISI dei DATI

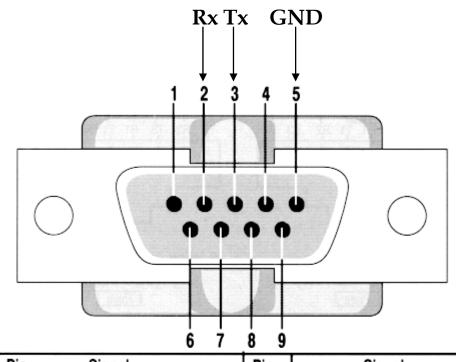
Caratteristiche del convertitore A/D

Caratteristiche:

DINAMICA: D[V]

RISOLUZIONE: *n* [bit] o *N* [livelli]

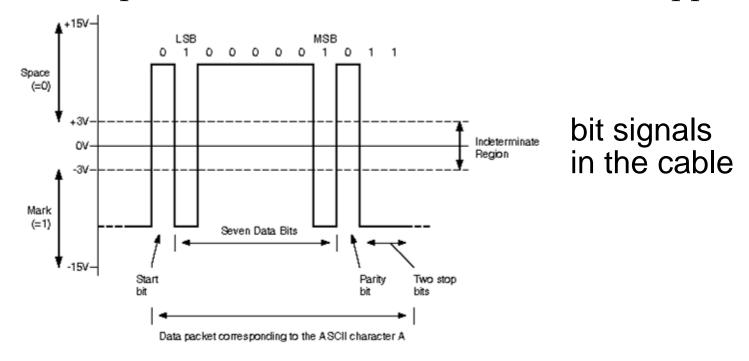
VELOCITA': f_c [Hz] o T_c [s] o anche f_{sample} [Sa/s] RUMORE ELETTR. [mV efficaci] o BIT EQ. n_e [bit] COSTO [€] e CONSUMI [mW]


PROTOCOLLI DI COMUNICAZIONE

Interfaccia seriale RS-232

La **comunicazione seriale** avviene attraverso **tre linee**:

- (2) RX ricezione;
- (3) TX trasmissione;
- (5) linea di massa GND; (i livelli RX e TX sono quindi riferiti al GND).


Altre linee possono essere disponibili ma in generale non sono richieste.

Pin	Signal	Pin	Signal
1	Data Carrier Detect	6	Data Set Ready
2	Received Data	7	Request to Send
3	Transmitted Data	8	Clear to Send
4	Data Terminal Ready	9	Ring Indicator
5	Signal Ground		<u>-</u>

Interfaccia seriale RS-232

Il livello di tensione corrispondente allo stato alto (1) è compreso tra +3 V e +12 V mentre lo stato logico basso (0) è tra -3 V e -12 V (nel PC o nel dispositivo, invece sul cavo i livelli sono opposti).

Parametri fondamentali del protocollo seriale sono: baud rate (velocità trasmissione ≈9.6 kbit/s), data bits (sono 7), stop bit(s) e parity bit (è 1). Il singolo messaggio è un pacchetto costituito dai bit di dati, stop e parità.

Interfaccia IEEE-488 (GPIB)

Le caratteristiche essenziali dell'<u>interfaccia parallela</u> GPIB (general purpose interface bus) sono :

• 8 linee dati (DIO1-DIO8, TTL 0-5 V), 5 linee di gestione dell'interfaccia e 3 linee di *handshake*;

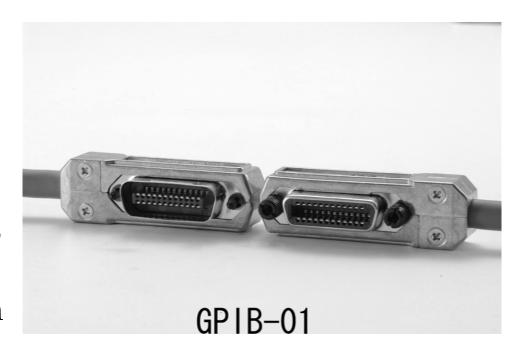

• il codice di trasferimento dei dati è ASCII a 7 bit + 1 bit di

parità (1 dato = 1 byte);

• il numero massimo di dispositivi collegabili è 15 con lunghezza massima di collegamento pari a 20 m

 velocità massima di trasmissione 1 Mbyte/s (tipiche di ≈400 kbyte/s)

 ogni strumento collegato ha il suo indirizzo GPIB


Interfaccia IEEE-488 (GPIB)

Ognuno dei dispositivi collegati al bus può assumere uno dei **tre** ruoli attivi (**modalità**):

- LISTENER (ascoltatore)
- TALKER (parlatore)
- CONTROLLER (controllore)
- \Rightarrow riceve i dati
- \Rightarrow trasmette i dati
- \Rightarrow gestisce il bus

Un dispositivo può anche assumere più di un ruolo. La minima configurazione richiede **un controller** e *un talker* **o** *un listener*.

Esiste anche un quarto ruolo detto *idler* (ozioso) un cui il dispositivo è in fase di attesa

Interfaccia USB

L'*Universal Serial Bus* (USB) è uno standard di comunicazione seriale che consente di collegare diverse periferiche (fino a 127 compresi gli hub di connessione delle periferiche) tra di loro o a un computer.

- 1 VBUS \Rightarrow alimentazione (+5 V)
- 2 D $^{-}$ \Rightarrow "ricezione" dati
- $3 D^+ \Rightarrow$ "trasmissione" dati
- 4 GND ⇒ riferimento di massa

I dati sono tensioni differenziali con $\Delta V^{+} \cong +3 \text{V e } \Delta V^{-} \cong -3 \text{V per } \Delta V = (D^{+} - D^{-}) = 2.8 \div 3.6 \text{V}$

Velocità di trasferimento dati:

USB 1.0 \Rightarrow 1.5 Mbit/s

USB 1.1 o 2.0 full speed \Rightarrow 12 Mbit/s USB 2.0 high speed \Rightarrow 480 Mbit/s

La trasmissione viene eseguita in modalità *half duplex* (monodirezionale alternata).

SHIELD

Interfaccia USB

Quando una periferica o un *hub* viene connesso alla struttura ad albero gli viene assegnato un indirizzo logico. Dopo essersi sincronizzato con il *clock* del ricevitore invia un stringa di bit indicando quale tipo di trasferimento dati desidera eseguire:

- 1 Control ⇒ operazioni di comando e stato
- 2 Interrupt ⇒ latenze garantite, pochi dati trasferiti
- 3 Bulk ⇒ latenze non garantite, trasferimento di un grosso pacchetto di dati
- 4 Isosinchronous ⇒ trasferimento continuo (*streaming*) di dati

Un singolo cavo USB può essere lungo fino a 5 m Collegando degli *hub* le periferiche possono trovarsi fino a 30 m dall'utilizzatore Sulla connessione di alimentazione (VBUS) un PC può erogare fino a 500 mA di corrente a 5 V. Grazie a ciò è possibile anche alimentare periferiche a "basso consumo" di potenza (<2.5 W)