

Oscilloscopes and **Accessories**

Politecnico di Milano

Antonesis 11110

Agilent Technologies

The Role of Oscilloscopes

Oscilloscopes have played an important role in all major developments in electronics.

- The first computers
- Microprocessors and personal computers
- The space program
- **Telecommunications**
- Entertainment
- Radar and avionics
- **Medical instrumentation**

Tektronix founders, Jack Murdock and Howard Vollum, with an oscilloscope from the 1950s.

Oscilloscopes Show How Signals Change

Draws a graph of an electrical signal

- Vertical (Y) axis is voltage
- Horizontal (X) axis is time

Types of Waves

You can classify most waves into these types:

- Sine waves
- Square and rectangular waves
- Triangle and saw-tooth waves
- Step and pulse shapes
- Periodic and non-periodic signals
- Synchronous and asynchronous signals
- Complex waves

An NTSC composite video signal is an example of a complex wave.

Choosing the Right Oscilloscope

Key parameters to evaluate:

Bandwidth

Rise Time

Sample Rate

Record Length

What Is Oscilloscope Bandwidth?

Bandwidth = Sine Wave -3 dB Point of a System

0 dB 6 div at 50 kHz

4.2 div at bandwidth

Bandwidth x Risetime = 0.35^* 100 MHz Bandwidth = 3.5 nsec Risetime

* This constant is based on a one pole model. For higher bandwidth instruments, this constant can range as high as 0.45.

Astropala Assalonala Askrow

Bandwidth vs. Amplitude Accuracy

- At the 3dB bandwidth frequency, the <u>vertical amplitude error</u> will be approximately 30%.
- <u>Vertical amplitude error</u> specification is typically 3% maximum for the oscilloscope.

Use Caution with Complex Signals

Complex signals contain many spectral components that cumulatively form a signal over time.

• Spectral components are sine waves at varying frequencies and varying amplitudes which are added together to collectively form one signal.

Avoiding Bandwidth Measurement Errors

Follow the 5 Times Rule for Bandwidth

• For less than +/- 2% measurement error

Key Performance Considerations: Rise Time

Insufficient rise time will affect your signal

 Many logic families have faster rise times than clock rates suggest

Key Performance Considerations: Sample Rate

- Determines how frequently an oscilloscope takes a sample
 - Faster sample rate, greater resolution and waveform detail

Required Sample Rate

5X oversampling is recommended to avoid aliasing and to capture signal details.

Key Performance Considerations: Record Length

- Determines how much "time" and detail can be captured in a single acquisition
 - Longer record length, longer time window with high resolution

Oscilloscope Vertical System

Oscilloscope Horizontal System

Triggering System Controls

System Bandwidth

System Bandwidth = Bandwidth of the Probes + Oscilloscope !

Measurements with Oscilloscopes

Scope Disconnected from Ground - 'Floating'

Basic Probe Types

Probes Affect the Measurement System As Well As the DUT Without probe &

Oscilloscope

NOTE: V_{cc} is an AC Ground

1.11

Advertical

1X Probe Model (Length of Cable)

Advantages:

- 1X (No Attenuation)
- Inexpensive

Disadvantages:

- Very High Reflections
- Very High Input C
- Very Low Bandwidth

* Typical 50 Ω cable has about 30 pF/ft of capacitance

Typical High Z 10X Passive Probe Model

Advantages:

- High Input R
- Wide Dynamic Range
- Inexpensive
- Mechanically Rugged
- Low Input C vs 1X Probe

Disadvantages:

- Input C Too High
- Not Compatible with 50 Ω Systems
- Must be Compensated

Compensation Effects

Astropala Academia Adusve

Probe Tip Capacitance and Source Impedance Effects

Circuit Under Test Inductance Effects

Addressie

Active Probe Model

Advantages:

- Low Input Capacitance
- Wide Bandwidth
- High Input R
- Compatible with 50 Ω Systems and 1 M Ω with Termination Resistor
- No Compensation Necessary

Disadvantages:

- Higher Cost
- Limited Dynamic Range
- Mechanically Less Rugged
- Requires Power

Active Differential Probes

Advantages:

- Lower Input Capacitance
- Higher CMRR vs Frequency Than Passive Differential Pair
- Uses One Scope Channel

Disadvantages:

- Higher Cost
- Limited Dynamic Range
- Requires Power

Active Current Probe Model

- DC & AC Current Measurements
- Compatible With 50 Ω and 1 $M\Omega$ Single-ended Systems
- Lower DUT Loading (R_{reflected} typically <<1 Ω L_{reflected} typically <5 μH)
- Direct Connection Types

- Higher Cost
- Mechanically Less Rugged and Larger Size
- Requires Power
- Non Direct Connection Require
 Additional Amplifier

Digital Probe for Oscilloscope

- 18 or 36 Digital Channels
- 1.25 GS/s Sample Rate per Digital Channel
- 2 Mpts Memory per Digital Channel
- 12 Serial Decoder & Trigger Options

Digital Probe for Oscilloscope

Simoultaneous analog and digital channels

Oscilloscope Technology Overview

Arteepsia Arasiansia Askervi

• Agilent Technologies

Evolution of Oscilloscopes

Scope Technology	ART
	1950
Market Drivers	 Military Vacuum tube technology Emerging solid state technology Broadcast video

Customer Challenges

- Device characterization
 Signal edges and
- waveshapes

Analog Oscilloscope Definition

with sweep circuit (right).

Webster, 1906: "An instrument in which variations in a fluctuating electrical quantity appears temporarily as a visible waveform on the fluorescent screen of a cathode-ray tube."

1998:

An instrument used for visually observing and measuring electronic signals.

Micro Channel Plate (MCP)

Provides the Ability to See Single-Shot "Fast" Signals on an Analog Real Time Scope

The "Writing Speed" is 100 to 1000 Times Faster Than That of a Normal Analog Scope

Analog Oscilloscope Benefits

Direct visual impression of actual signal behavior

Intensity grading (frequency of occurrence information)

No quantizing error or aliasing

Very fast waveform capture rate

Single level user interface

Analog Oscilloscope Shortcomings

Purely visual information

Blink and miss

Limited bandwidth performance

Edge triggering

No pre-trigger information

Optimized for single channel operation

Limited writing speed for low repetition rate signals

Evolution of Oscilloscopes

Scope Technology	ART	DSO
	1950	1980
Market Drivers	 Military Vacuum tube technology Emerging solid state technology Broadcast video 	 Computers LSI Digital data Mixed signal environments Faster microprocessor clock rates System integration Quality assurance
Customer Challenges	 Device characterization Signal edges and waveshapes 	 Signal data High-frequency effects Documentation

Articipale Anitem

Sampling

(S/s, kS/s, MS/s, GS/s)

What Happens To The Samples?

Types of Digital Resolution

Vertical	→ 1/#	ELevels 🗲	% of Full Scale
6-Bits	→ 1/64	→ 1.56%	
8-Bits	→ 1/256	→ 0.39%	
10-Bits	→ 1/1024	→ 0.097%	
12-Bits	→ 1/4096	→ 0.024%	

- Horizontal = Time/Sample
 - = 1/Sample Rate

What About Horizontal Resolution?

Two criteria are affected when improving resolution (decreasing time) between samples for a given time window.

You need ...

- More Sample Rate (or Speed)
- More Record Length (or Memory)

Basic Types of Digital Storage Oscilloscope (DSO) Capabilities

Real Time Digitizing (RTD)

•samples single-shot events in real time.

Equivalent Time Digitizing (ETD)

•uses repetitive sampling to reconstruct the shape of a high frequency repeating waveform over many triggered acquisition cycles.

Real Time Digitizing

Digitized samples are accumulated randomly before and after each trigger point. Time must be measured from the trigger point to the next sample in order to correctly place the digitized samples in the display memory.

Digitized samples are accumulated randomly before and after each trigger point. Time must be measured from the trigger point to the next sample in order to correctly place the digitized samples in the display memory.

Digitized samples are accumulated randomly before and after each trigger point. Time must be measured from the trigger point to the next sample in order to correctly place the digitized samples in the display memory.

Digitized samples are accumulated randomly before and after each trigger point. Time must be measured from the trigger point to the next sample in order to correctly place the digitized samples in the display memory.

Multiple samples per trigger provide faster update rate.

Pre/post trigger capability is preserved.

Т3

S8 1

S9

Artiespale Accelerate Askern

Single Event Bandwidth

Must Have Enough Sample Points to Reconstruct Waveform

Is Determined By the DSO's Analog Bandwidth, Maximum Sample Rate, and Method of Waveform Reconstruction

What Happens When Too Few Samples Are Acquired?

Aliasing or False Waveform Reproduction

Real Time Sampling – Aliasing Example

<u>Reason:</u> Sample Rate to Slow <u>Result:</u> too Low Frequency, Wrong Waveform, no Stable Trigger <u>Cause:</u> Sample Rate to Slow or Insufficient Memory Selected

Perceptual Aliasing

Can Exist When Nyquist Theory is Satisfied Cannot be Reliably Distinguished from Actual Aliasing Without

Linear Interpolation

Simply Means "Join the Acquired Samples" with Straight Lines

Can Reduce the Effects of Perceptual Aliasing

Sine (X)/X Interpolation (Based On Nyquist Theory)

Computes a Path Between the Acquired Samples Based on Digital Signal Processing Theory

Can Remove the Effects of Perceptual Aliasing Only When Nyquist Theory is Satisfied

DSO Acquisition Modes

Sample

•Takes samples at the displayed sample rate.

Peak Detect

•Detects peaks between displayed samples.

Envelope

•Accumulates peaks over multiple acquisitions.

ERES or High Resolution

•Box car averages between displayed samples.

Average

•Averages (normal or weighted) over multiple acquisitions.

Digital Peak Detection Allows

Sampling at the Maximum Sample Rate At All Sweep Speeds

Retained Minimum and Maximum Values as Displayed Sample Pairs

Improved Writing Speed to Capture Glitches

Example of Digital Peak Detect

ERES Averaging

ERES processes N samples, but the sample values are weighted to produce a finite impulse response (FIR) filter with a more desirable low pass frequency response. The principal advantage of the ERES technique is that it produces a frequency response which is Gaussian; it has no side lobes in the frequency domain and it never causes overshoot or undershoot or ringing in the time domain.

Table 1 The Enhanced Resolution filter parameters					
Resolution Enhancement [Bits]	-3 dB Bandwidth [x Nyquist]	Filter Length [samples]	Effective Dynamic Range		
0.5	0.5	2	362:1		
1	0.241	5	512:1		
1.5	0.121	11	724:1		
2	0.058	25	1024:1		
2.5	0.029	52	1448:1		
3	0.016	106	2048:1		

Box Car Averaging

As time/division is increased, better vertical amplitude resolution and noise removal can occur for a single triggered acquisition, at lower bandwidth. Used for High Resolution Acquisition Mode.

Comparison ERES and Box Car (HI Res)

Envelope Mode Can Accumulate Noise Average Mode Can Reduce Random Noise

First Trace

- Envelope Mode
- Shows Maximum Noise

Second Trace

- Average Mode
- Reduces Noise

Digital Storage Oscilloscope Benefits

Store waveforms

- Capture infrequent anomalies
- Use advanced triggering
- Display pre-trigger waveshape
- Remove noise
- Provide more accurate time base
- Allow color display
- Process signals (averaging, FFT) Transfer/copy stored waveforms

DSO Shortcomings

- Limited waveform capture rates
- Aliasing due to insufficient data
- No intensity grading (distribution of occurrence information)

Evolution of Oscilloscopes

Scope Technology	ART	DSO 1980	DPO 1998
Market Drivers	 Military Vacuum tube technology Emerging solid state technology Broadcast video 	 Computers LSI Digital data Mixed signal environments Faster microprocessor clock rates System integration Quality assurance 	 Convergence Interoperability Faster data rates and microprocessor clocks
Customer Challenges	 Device characterization Signal edges and waveshapes 	 Signal data High-frequency effects Documentation 	 Complex signals Standards compliance Test equipment performance

A Breakthrough Solution The Digital Phosphor Oscilloscope

Digital Phosphor Oscilloscope

An instrument that digitizes electrical signals and displays, stores, and analyzes three dimensions of signal information in real time.

You Cannot See What Occurs During Acquisition/Sweep Holdoff Time

For any scope, there is always holdoff time during a display update cycle when the signal cannot be acquired.

The probability of seeing the low rep-rate anomaly that occurs on the measured signal decreases as this holdoff time increases.

Probability _ Acquisition (Sweep) Time of Capture Acquisition (Sweep) Time + System (Sweep) Holdoff Time

You will not know this probability by simply looking at the display update.

Waveform Capture Rate Is Limited By Holdoff Time

How Likely Are You To See Your "Hard To Find" Problem?

Example: Assume

- 1 MHz Square Wave Signal
- 1 µsec/Division Time Base Setting
- Pulse Aberration Occurs About Once Per Second, or Once Every Million Cycles

DPO Acquisition Allows

Over 1,000,000 Acquisitions/Second

Color and Intensity Grading for Historical Information

Instantaneous Feedback on Signal Changes

Simultaneous Viewing of All Channels (Analog Scopes Must Use Chop or Alternate)

Analog Scope Capture Confidence

Compare the Architectures

R&S ®RTO Digital Oscilloscopes

...With this architecture the processing path after the acquisition memory is able to achieve data throughput rates 1/5 that of the real time path in front of the acquisition memory. This translates into a theoretical active acquisition time of 20%....

MegaZoom IV Scope Block Diagram

Advantages of Analog Real Time

- Avoids Aliasing
- Displays Fast Waveform Update Rate
- Provides Micro Channel Plate Writing Speed
- Displays Gray Scale Information
- Provides Low Cost Repetitive Bandwidth
- Has Ease of Use Through Familiarity

Remember <u>Writing Speed</u> and <u>Waveform Update Rate</u> for finding low rep-rate faults.

Advantages of Digital Storage

- Allows Up To 1 GHz Bandwidth Acquisitions For Single-Shot Events
- Finds Glitches With Peak Detect/Envelope
- Finds Anomalies With DPX[™] Enhanced DPO Acquisition
- Acquires Waveforms Before the Trigger
- Makes More Accurate Timing Measurements
- Provides Highest Bandwidth With Equivalent Time Digitizing
- **Enables Digital Signal Processing**
- Allows A Color Display

Advantages of Digital Phosphor Oscilloscope (DPO)

- Simulates the Characteristics of an Analog Real Time Oscilloscope's Fast Waveform Capture Rate and Intensity Graded Display
- Provides Intensity and/or Color Graded
 Display Showing Distribution of
 Amplitude Over Time, All In Real Time
- Integrates An Image Over Many Real Time Traces of the Signal

Remember Probing and Vertical Amplifier Issues

Such as: Loading Effects Differential Measurements Current Sensing High Voltage Breakdown Transducer Characteristics Vertical Range and Linearity Vertical Sensitivity

Antoquia Askers Accelerate

►

Agilent Technologies